• Title/Summary/Keyword: transgenic Arabidopsis

Search Result 184, Processing Time 0.021 seconds

Expression and in vitro function of anti-cancer mAbs in transgenic Arabidopsis thaliana

  • Song, Ilchan;Kang, Yang Joo;Kim, Dae Heon;Kim, Mi Kyung;Ko, Kisung
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.229-233
    • /
    • 2020
  • The anti-colorectal cancer monoclonal antibody CO17-1A (mAb CO), which recognizes the tumor-associated antigen EpCAM, was expressed in transgenic Arabidopsis plants. PCR and western blot analyses showed the insertion and expression of heavy chain (HC)/HC fused to the KDEL ER retention modif (HCK) and light chain (LC) of mAb CO and mAb CO with HCK (mAb COK) in Arabidopsis transformants. Both plant-derived mAbP CO and mAbP COK were purified from a biomass of approximately 1,000 seedlings grown in a greenhouse. In sandwich ELISA, both mAbP CO showed a slightly higher binding affinity for the target, EpCAM, compared to mAbM CO. In cell ELISA, both mAbsP COs showed binding affinity to the human colorectal cancer cell line SW480. Furthermore, mAbM CO, mAbP CO, and mAbP COK exhibited dose and timedependent regression effects on SW480 cells in vitro. In summation, both mAbP CO and mAbP COK, expressed in Arabidopsis, recognized the target antigen EpCAM and showed anti-proliferative activity against human colorectal cancer cells.

The transposition pattern of the Ac element and its use for targeted transposition in Arabidopsis thaliana

  • Machida, Yasunori;Onouchi, Hitoshi;Tanaka, Hirokazu;Hamada, Susumu;Ishikawa, Takaaki;Semiarti, Endang;Iwakawa, Hidekazu;Nomura, Kiyohito;Machida, Chiyoko
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.11-15
    • /
    • 1999
  • In order to evlauate feasibility of the gene tagging by the maize transposable element Ac in heterologous plant systems, we have investigated physical distances and directions of transposition of the element in Arabidopsis thaliana and tobacco cultured cell line BY-2. We prepared a T-DNA construct that carried a non-autonomous derivative of Ac with a site for cleavage by endonuclease I-Scel (designated dAc-I-RS element). Another cleavage site was also introduced into the T-DNA region outside dAc-I-RS. A number of transgenic Arabidopsis plants were generated, each of which had a single copy of the T-DNA at a different chromosomal location. To examine the pattern of transposition, three out of these transgenic plants were crossed with the Arabidopsis plant that carried the gene for Ac transposase and progeny in which dAc-I-RS had been transposed were isolated. After digestion of the genomic DNA of these progeny with I-SceI, sizes of segment of DNA were determined byd pulse-field gel electrophoresis. We also performed linkage analysis for the transposed elements and sites of mutations near the elements. Our results with three transgenic lines showed that 50% of all transposition events had occurred within 1,700 kilo-base pairs (kb) on the same chromosome, with 35% within 200 kb, and that the elements transposed in both directions on the chromosome with roughly equal probability. The data thus indicate that the Ac-Ds system is most useful for tagging of genes that are present within 200 kb of the chromosomal site of Ac in Arabidopsis. In addition, determination of the precise localization of the transposed dAc-I-RS element should definitely assist in map-based cloning of genes around insertion sites. In the present paper, we report typical examples of such gene isolation studies.

  • PDF

The increased GUS gene inactivation over generation in Arabidopsis transgenic lines (애기장대 형질전환 식물체의 세대경과에 따른 GUS유전자의 비활성화에 관한 연구)

  • Park, Soon-Ki
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.67-76
    • /
    • 2002
  • The effect of transgene inactivation in T2, T3 and F2 generations was analyzed in progeny seedlings which had been generated by Agrobacterium (LBA4404/pBI121)-mediated transformation in Arabidopsis thaliana. In a system which investigated in the expression of $\beta$-glucuronidase(GUS)gene in kanamycin-resistant (ke $n^{R}$)seedlings, GUS inactivated seedlings were observed in 5 of 12 tested lines of T2 generation and the frequency of GUS inactivation was approximately 2.3%. Lines with multi-copies of T-DNA exhibited severe GUS gene inactivation with the frequency of 5.8% in T2 generation. In T3 generation lines exhibited GUS gene inactivation with the frequency of 1.3%. In contrast, inactivation increased dramatically up to 12.6% in multi-copy T-DNA line. A similar phenomenon was also found in F2 progeny from a transgenic line which had been crossed with wild-type Arabidopsis plant, WS-O (GUS gene inactivation frequency 9.9%). These results indicate that the foreign gene introduced into the plant was inactivated progressively in its transmission during subsequent generations and the transgenic line with multi-copies of T-DNA tended to show more increased inactivation.

Auxin Effects on Symptom Development of Beet Curly Top Virus Infected Arabidopsis thaliana

  • Lee, Suk-Chan
    • Journal of Plant Biology
    • /
    • v.39 no.4
    • /
    • pp.249-256
    • /
    • 1996
  • Beet curly top virus is the DNA virus that is providing useful for basic studies of the infection of Arabidopsis thaliana with viral host and provides a system for studying both resistance and the molecular basis of symptom development. An importnat aspect of symptom development observed in BCTV-infected A. thaliana (ecotype Sei-O) was the induction of cell division on phloem and surrounding cortex cells. Analysis of the expression of GUS reporter gene activity in transgenic plants containing constructs with promoter of the auxin-inducible saur gene showed that saur promoter activity was induced concomitantly in symptomatic tissues at the inflorescence shoot tips of the transgenic lines. The auxin sensitivity tests showed that hypersusceptible ecotype, Sei-O produced more amounts of callus than susceptible ecotype, Col-O. These studies indicated that changes in auxin concentration were involved in the induction of cell division in BCTV-infected plants and clearly demonstrated that there was a strong correlation between auxin-induced gene expression and the activation of cell division.

  • PDF

Functional Characterization of 5-Enopyruvylshikimate-3-Phosphate Synthase from Alkaliphilus metalliredigens in Transgenic Arabidopsis

  • Xing, Xiao-Juan;Tian, Yong-Sheng;Peng, Ri-He;Xu, Jing;Zhao, Wei;Yao, Quan-Hong;Sun, Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1421-1426
    • /
    • 2014
  • Although a large number of AroA enzymes (EPSPS: 5-enopyruvylshikimate-3-phosphate synthase) have been identified, cloned, and tested for glyphosate resistance, only two AroA variants, derived from Agrobacterium tumefaciens strain CP4 and Zea mays, have been utilized to produce the commercial glyphosate-resistant crops. Here, we have used a PCR-based twostep DNA synthesis method to synthesize an aroA gene ($aroA_{A.\;metalliredigens}$) from Alkaliphilus metalliredigens, encoding a new EPSPS. Furthermore, transgenic Arabidopsis with the new $aroA_{A.\;metalliredigens}$ gene was obtained to confirm the potential of the novel aroA gene in developing glyphosate-resistant crops.

Biochemical and Molecular Analysis of OsPAP1: A Phosphate Starvation Induced Purple Acid Phosphatase Gene from Rice

  • Hur, Yeon Jae;Yi, Young Byung;Kim, Tae Ho;Kim, Doh Hoon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.455-462
    • /
    • 2010
  • Purple acid phosphatase is important for phosphorus remobilization in plants, but its role in plant adaptation to low phosphorus availability is not known. The cDNA encoding O. sativa purple acid phosphatase (OsPAP1) has 1008 bp with an open reading frame of 335 amino acid residues. The amino acid sequence of OsPAP1 cDNA shows of 50-51% identity with other plant purple acid phosphatases. OsPAP1 was expressed in rice plants and in cell cultures in the absence of phosphate ($P_i$). The expression was organ-specific with the strongest expression in $P_i$-deprived roots. Functional expression of the OsPAP1 gene in the transgenic Arabidopsis line was confirmed by northern and western blot analysis. OsPAP1 overexpression lines had higher phosphatase activity than wild-type. Overexpression of OsPAP1 in Arabidopsis plants resulted in increased Pi accumulation under Pi sufficient condition. These results show that the OsPAP1 gene represents more efficient $P_i$ uptake and can be used to develop new transgenic dicotyledonous plants.

Studies on nickel uptake in transgenic Arabidopsis thaliana introduced with TgMTP1 gene encoding metal tolerance protein (TgMTP1 과발현 애기장대에서 Nickel 흡수 연구)

  • Kim, Donggiun
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.409-413
    • /
    • 2015
  • To enhance phytoremediation, which removes heavy metal from soil, transgenic plants were applied to contaminated soil. We constructed a transformation vector expressing both $TgMTP_1$ (T. goesingense metal tolerance protein):HA and TgMTP:GFP genes. Transgenic plants were generated using an Agrobacterium-mediated transformation system that expressed the two vectors. Screening and analysis confirmed the incorporation of foreign genes into the Arabidopsis thaliana genome. Callus was induced in the 116 T3 line. These transgenic plants and calli were used for further analyses on the accumulation of Ni. The 116 T3-line plants and calli from selected lines were resistant to heavy metals and accumulated Ni in their leaves. The expression level of TgMTP RNA was equal in all leaves, but protein stability increased in the leaves with Ni treatment. According to these results, we suggest that $TgMTP_1$-overexpressing plants may be useful for phytoremediation of soil.

Systematic approaches to identify functional genes using the FOX-hunting system in Chinese cabbage (FOX hunting system을 이용한 배추 기능유전자 탐색)

  • Lee, In-Hoo;Jung, Yu-Jin;Park, Jong-In;Nou, Ill-Sup;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.174-185
    • /
    • 2010
  • Full-length cDNAs are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. To elucidate the functions of a large population of Chinese cabbage (Brassica rapa) genes and to search efficiently for agriculturally useful genes, we have been taking advantage of the full-length cDNA Over-eXpresser (FOX) gene hunting system. With oligo dT column it purify the each mRNA from the flower organs, leaf and stem tissue. And about 120,000 cDNAs from the library were transformed into $\lambda$-pFLCIII-F vector. Of which 115,000 cDNAs from the library were transformed into T-DNA binary vector, pBigs for transformation study. We used normalized full-length cDNA and introduced each cDNA into Arabidopsis by in planta transformation. Full-length Chinese cabbage cDNAs were expressed independently under the CaMV 35S promoter in Arabidopsis. Selfed seeds were harvested from transgenic Arabidopsis. We had selected 2,500 transgenic plants by hygromycin antibiotic tolerant test, and obtained a number of transgenic mutants. Each transgenic Arabidopsis was investigated in morphological changes, fertility and leaf colour. As a result, 285 possible morphological mutants were identified. Introduced cDNA was isolated by PCR amplification of the genomic DNA from the transgenic mutants. Sequencing result and BLAST analysis showed that most of the introduced cDNA were complete cDNAs and functional genes. Also, we examined the effect of Bromelain on enhancing resistance to soft rot in transgenic Chinese cabbage 'Osome'. The bromelain gene identified from FOX hunting system was transformed into Chinese cabbage using Agrobacterium methods. Transformants were screened by PCR, then RT-PCR and real time PCR were performed to analyze gene expression of cysteine protease in the T1 and T2 generations. The anti-bacterial activity of bromelain was tested in Chinese cabbages infected with soft rot bacteria. The results showed that the over-expressed bromelain gene from pineapple conferred enhanced resistance to soft rot in Chinese cabbage.

RNAi-mediated reduction of xanthine dehydrogenase results in increased biomass of Arabidopsis seedlings

  • Nakagawa, Ayami;Sakamoto, Atsushi;Takahashi, Misa;Morikawa, Hiromichi
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.356-360
    • /
    • 2005
  • Xanthine dehydrogenase (XDH), a classic enzyme involved in purine catabolism, can catalyze the formation of redox-signaling reactive oxygen and nitrogen species such as superoxide and nitric oxide. We generated transgenic plants of Arabidopsis in which XDH was knocked out by introduction of hairpin RNA-expression vector. Expression analysis by reverse transcription-PCR and in-gel staining of XDH activity revealed that transgenic lines efficiently suppressedXDH expression at the transcriptional level, demonstrating that RNA interference was successfully induced. XDH-suppressed transgenic lines exhibitedincreased biomass production during the growth of seedlings.

  • PDF

OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis

  • Jin, Xiao-Fen;Xiong, Ai-Sheng;Peng, Ri-He;Liu, Jin-Ge;Gao, Feng;Chen, Jian-Min;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.34-39
    • /
    • 2010
  • Expression patterns of OsAREB1 revealed that expression of OsAREB1 gene can be induced by ABA, PEG and heat. Yeast one-hybrid assay demonstrated it can bind to ABA-responsive element (ABRE), which was found in most stress-induced genes. Transgenic Arabidopsis over-expressing OsAREB1 had different responses to ABA and glucose compared to wild-type plants, which suggest OsAREB1 might have a crucial role in these two signaling pathways. Further analysis indicate that OsAREB1 have multiple functions in Arabidopsis. First, OsAREB1 transgenic plants had higher resistance to drought and heat, and OsAREB1 up-regulated the ABA/stress related gene such as RD29A and RD29B. Second, it delayed plant flowering time by down-regulating the expression of flowering-related genes, such as FT, SOC1, LFY and AP1. Due to the dates, OsAREB1 may function as a positive regulator in drought/heat stresses response, but a negative regulator in flowering time in Arabidopsis.