• Title/Summary/Keyword: transformer model

Search Result 594, Processing Time 0.025 seconds

Digital Time-Domain Simulation of Ferroresonance of Potential Transformer in the 154 kV GAS Insulated Substation

  • Shim, Eung-Bo;Woo, Jung-Wook;Han, Sang-Ok
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.9-14
    • /
    • 2001
  • This paper reports a set of digital time-domain simulation studies conducted on 154 kV wound Potential Transformer(PT) int he 154 kV Gas Insulated Substation(GIS). The Electro-Magnetic Transient Program(EMTP) is used to develop the PT model and conduct the transient studies. The accuracy of the PT model is verified through comparison of the EMTP simulation results with those obtained from the field test results. The investigations shows that the developed model can accurately predict PT transient resonance, especially, the phenomenon of ferroresonance. The model is developed not only to determine impact of transients on PT response but also to design ferroresonance suppressor devices of PT. And it can also be used to predict PT transient response on power system monitoring and protection scheme.

  • PDF

Insulating Design and Test of 22.9kV Class Mini-Model Transformer Considering AC Loss (AC Loss를 고려한 22.9kV급 Mini-Model 변압기의 절연 설계 및 시험)

  • 백승명;정종만;곽동순;김해종;석복렬;김상현
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.420-424
    • /
    • 2004
  • This paper presents experimental data from model windings with different arrangement of coil in order to provide information to design a 22.9kV class HTS transformer. Before experiment, the composite insulation of two different type of HTS transformers are investigated. The first basic of investigation is a breakdown characteristic of liquid nitrogen and flashover characteristic on the GFRP surface under ac and impulse, The second investigation is insulation design, manufacture and test of model windings. These include a AC withstand voltage test of 50 kV rms and a lighting impulse test of 150 kV at peak.

Automated Fact Checking Model Using Efficient Transfomer (효율적인 트랜스포머를 이용한 팩트체크 자동화 모델)

  • Yun, Hee Seung;Jung, Jason J.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1275-1278
    • /
    • 2021
  • Nowadays, fake news from newspapers and social media is a serious issue in news credibility. Some of machine learning methods (such as LSTM, logistic regression, and Transformer) has been applied for fact checking. In this paper, we present Transformer-based fact checking model which improves computational efficiency. Locality Sensitive Hashing (LSH) is employed to efficiently compute attention value so that it can reduce the computation time. With LSH, model can group semantically similar words, and compute attention value within the group. The performance of proposed model is 75% for accuracy, 42.9% and 75% for Fl micro score and F1 macro score, respectively.

Temperature Characteristics Analysis of Hybrid Transformer (하이브리드 몰드 변압기의 온도 특성 해석)

  • Kim, Jong-Wang;Park, Hun-Yang;Lee, Hyang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.931-936
    • /
    • 2013
  • In this paper, the temperature distribution of 400kVA hybrid transformer is predicted by using CFD analysis. The copper loss and iron loss which are heat source are calculated by using Joule heat and Bertotti's equation respectively. To improve the convergence of the numerical calculation and to reduce the computation time, the 1/4 model is used and the incompressible air model is used for external air. To verify analysis result, the temperature rise test and no-load test of the transformer are performed. The experiment result obtained by using thermo-graphic camera is similar to the numerical result of the CFD analysis.

Numerical Analysis on Natural Convection Heat Transfer in an Enclosure of the Transformer Model (전기 변압기 형상 내부의 밀폐공간 내에서 층류 자연대류 열전달 현상의 수치해석)

  • Oh, Keon Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.106-115
    • /
    • 1992
  • Numerical analysis of the laminar natural convection in an enclosure of the 20KVA oil-immeresed transformer is presented. The core in the transformer is modelled as a rectangular cylinder and calculation is carried out for $Ra=10^3-10^6$. The correlating equation between the inner cylinder mean Nusselt numbers and Rayleigh numbers can be obtained. The conduction and convection regimes for the variation of Rayleigh numbers are well represented in the temperature distributions along the side wall of the inner cylinder. For high Rayleigh numbers, it is found that the recirculating flow in the enclosure above the inner cylinder is divided into two recirculation regions.

  • PDF

A study on Energy Saving Hydraulic System Using Hydraulic Transformer (유압 트랜스포머를 이용한 에너지 절감형 유압시스템에 관한 기초연구)

  • Lee, Min-Su;Ahn, Kyoung-Kwan;Cho, Yong-Rae;Jo, Woo-Keun;Hung, Ho Triet
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.917-922
    • /
    • 2008
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. Based on the nominal model derived from mathematical model, the feedback type two-degree-of-freedom controller is designed and implemented. From simulation results, the disturbances including nonlinear friction torque, leakage flow and load force can be compensated and good positioning accuracy is obtained. It show that the proposed controller is effective.

  • PDF

A Simplified Unified Model for Predicting the Dielectrophoretic Aactivity of Magnetic Nanoparticles Aimed at Enhancing the Dielectric Characteristics of Transformer Oil

  • Lee, Jong-Cheol;Jeon, Hong-Pil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.431.2-431.2
    • /
    • 2014
  • The dielectric breakdown voltage (DBV) is a measure of an insulating fluids ability to withstand a high electric field stress without breaking down. Conventionally, the presence of water or particulate matter in a dielectric fluid comprises the liquid's breakdown strength. However, the addition of magnetic nanoparticles (MNPs) in the base oil can increase the dielectric breakdown voltage of the fluid reversely, if the condition of the added particles in the fluid is in balance with that of keeping down the initiation and propagation of electrical streamers. In this study, we developed a mathematical model by a set of coupled, nonlinear equations using the COMSOL multiphysics finite element simulation suite and calculated the dielectrophoretic activity of magnetic nanoparticles suspended in the presence of electric field, which is the behavior responsible for enhancing the dielectric characteristics of transformer oil, in order to examine how the activity differ in a transformer oil-based magnetic fluid.

  • PDF

Analysis of the Ultrasonic Signals by the Partial Discharge and Noises from the Transformer (변압기 부분방전과 노이즈에 의한 초음파 신호 분석)

  • Gwon, Dong-Jin;Jeong, Gil-Jo;Jin, Sang-Beom;Gwak, Hui-Ro
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.354-360
    • /
    • 2002
  • The partial discharge detecting method using the ultrasonic technique has been investigated to monitor the insulation ageing of a transformer. However, the result of the studies on the ultrasonic technique for detecting of partial discharge in the operating transformer is not enough yet to utilize. This paper presents the analysis of the ultrasonic signals due to the partial discharge in a model transformer and the corona in air at a shielded high voltage room. In addition, the ultrasonic signals due to the vibration from the core, operation of the cooling pump, the fan and the OLTC at the 345㎸ power transformer, were analyzed and corona noise from overhead transmission line in 345㎸ substation were measured to remove the electrical and mechanical noises from the transformer. Furthermore, ultrasonic signal due to the partial discharge in the 154㎸ power transformer with in $C_2$$H_2$ gas warning condition was measured. The inside of the transformer was examined with care. which confirms the existence of the partial discharge source.

Analysis of Power Quality by Transformer Inrush Current (변압기 여자돌입에 의한 전력품질 분석)

  • Seo, Hun-Chul;Yeo, Sang-Min;Kim, Chul-Hwan;Lyu, Young-Sik;Cho, Burm-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.932-937
    • /
    • 2008
  • The transformer inrush current can cause a voltage drop by source impedance. This current can impact sensitive loads by the voltage drop. Therefore, it is necessary to take measures to limit this inrush current. This study, described in this paper, analyzes the power quality affected by transformer inrush current using the X power system in Korea. The Electromagnetic Transients Program(EMTP) is used to analyze the transient phenomenon. We discuss a method to model the hysteresis curve of the transformer in EMTP. We carried out various simulations to analyze the power quality during transformer energization. The analysis results of voltage drop by the inrush current occurrence when certain requirements are met are presented.