• Title/Summary/Keyword: transformer

Search Result 4,337, Processing Time 0.065 seconds

An Optimal Location of Superconducting Fault Current Limiter in Distribution Network with Distributed Generation Using an Index of Distribution Reliability Sensitivity (신뢰도 민감도 지수를 이용한 복합배전계통 내 초전도한류기의 최적 위치에 관한 연구)

  • Kim, Sung-Yul;Kim, Wook-Won;Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.52-59
    • /
    • 2010
  • As electric power demand of customers is constantly increasing, more bulk power systems are needed to install in a network. By development of renewable energies and high-efficient facilities and deregulated electricity market, moreover, the amount of distributed resource is considerably increasing in distribution network consequently. Also, distribution network has become more and more complex as mesh network to improve the distribution system reliability and increase the flexibility and agility of network operation. These changes make fault current increase. Therefore, the fault current will exceed a circuit breaker capacity. In order to solve this problem, replacing breaker, changing operation mode of system and rectifying transformer parameters can be taken into account. The SFCL(Superconducting Fault Current Limiter) is one of the most promising power apparatus. This paper proposes a methodology for on optimal location of SFCL. This place is defined as considering the decrement of fault current by component type and the increment of reliability by customer type according to an location of SFCL in a distribution network connected with DG(Distributed Generation). With case studies on method of determining optimal location for SFCL applied to a radial network and a mesh network respectively, we proved that the proposed method is feasible.

A Three-phase Current-fed DC-DC Converter with Active Clamp (연료전지용 3상 전류형 능동클램프 DC-DC 컨버터)

  • Cha, Han-Ju;Choi, Jung-Wan;Yoon, Gi-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.456-464
    • /
    • 2007
  • This paper proposes a novel three-phase current-fed active clamp DC-DC converter for fuel cells. A single common active clamp branch is used to limit transient voltage across the three-phase full bridge and to realize zero-voltage switching(ZVS) in all switches. To apply for the power generation system current-fed type has been combined with the three-phase power conversion system. The proposed approach has the following advantages: an increase (by a factor of three) of input current and output voltage chopping frequencies; lower RMS current through the inverter switches with higher power transfer capability; reduction in size of reactive later components and the power conditioning system; better transformer utilization; increase of the system reliability. Therefore, the proposed three-phase current-fed active clamp DC-DC converter is appropriate for the boost type DC-DC converter for fuel cells and also applicable for the photovoltaic and battery charge system. The paper details the analysis, simulation and hardware implementation of the proposed system. Finally, experimental results with the proposed PWM strategy demonstrate the feasibility of the proposed scheme on a 500W prototype converter.

Microstructure and Electrical Properties of Pb[(Mg,Mn)Nb]O3-Pb(Zr,Ti)O3 Piezoelectric Ceramics

  • Kim, Jin-Ho;Kim, Jong-Hwa;Baik, Seung-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.202-209
    • /
    • 2005
  • Phase evolution, microstructure and the electrical properties such as $k_p$ and $Q_m$ of $Pb(Mg_{1/3}Nb_{2/3})O_3[PMN]-Pb(Mn_{1/3}Nb_{2/3})O3[PM'N]-PbZrO_3[PZ]-PbTiO_3[PT]$ quaternary system were investigated within the compositional ranges $0{\leq}y{\leq}0.125$, y+z=0.125, and $0.39{\leq}x{\leq}0.54$ of the formula $Pb_{0.97}Sr_{0.03}[Mg_{1/3}Nb_{2/3})_y\;(Mn_{1/3}Nb_{2/3})_z\;(Zr_{x}Ti_{1-x})_{1-(y+z)}]O_3$. In the case of increasing Mn/(Mg+Mn) ratio for a fixed Zr/Ti ratio of 47.5/52.5, phase relation remained unchanged but the grain size drastically decreased, and the electrical properties changed as following: both $k_P$ and $Q_m$ reached the peak values at $Mn/(Mg+Mn)\cong0.3l7$ and gradually decreased; $\varepsilon33^T$ showed a monotonic decrease; P-E hysteresis loop gradually changed to asymmetrical one, and $E_i$ increased in correspondence. With increasing Zr/Ti ratio for a fixed Mn/(Mg+Mn) ratio of 0.317, on the contrary, the cell parameter $(\alpha^2c)^{1/3}$ gradually increased, and tetragonal-rhombohedral morphotropic phase boundary appeared in the range of $51/49{\leq}Zr/Ti{\leq}54/46$. the meantime, the grain size substantially increased, and the electrical properties changed as following: $k_P$ and $\varepsilon33^T$ reached peak values at Zr/Ti=51/49 and 48/52, respectively, and then gradually decreased; change of $Q_m$ was adverse to $k_P$; both $E_C\;and\;E_i$ considerably decreased while $P_S$ moderately increased. For the system 0.125(PMN+PM'N)-0.875PZT studied, the composition Mn/(Mg+Mn)=0.3l7 and Zr/Ti=51/49 revealed some promising electrical properties for piezoelectric transformer application such as $k_P=0.58,\;Q_m\cong1000$, and $\varepsilon^T_{33}=970$, as well as dense and fine-grained microstructure.

A Motor-Driven Focusing Mechanism for Small Satellite (소형위성용 모터 구동형 포커싱 메커니즘)

  • Jung, Jinwon;Choi, Junwoo;Lee, Dongkyu;Hwang, Jaehyuck;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2018
  • The working principle of a satellite camera involves a focusing mechanism for controlling the focus of the optical system, which is essential for proper functioning. However, research on focusing mechanisms of satellite optical systems in Korea is in the beginning stage and developed technology is limited to a thermal control type. Therefore, in this paper, we propose a motor-driven focusing mechanism applicable to small satellite optical systems. The proposed mechanism is designed to generate z-axis displacement in the secondary mirror by a motor. In addition, three flexure hinges have been installed on the supporter for application of preload on the mechanism resulting in minimization of the alignment error arising due to manufacturing tolerance and assembly tolerance within the mechanism. After fabrication of the mechanism, the alignment errors (de-space, de-center, and tilt) were measured with LVDT sensors and laser displacement meters. Conclusively, the proposed focusing mechanism could achieve proper alignment degree, which can be applicable to small satellite optical system.

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF

Design of a Miniaturized 5.3 GHz 360° Analog Phase Shifter (소형화된 5.3 GHz 대역 360° 아날로그 위상천이기 설계)

  • Jeong, Hae-Chang;Son, Bon-Ik;Lee, Dong-Hyun;Ahmed, Abdul-Rahman;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.602-612
    • /
    • 2013
  • In this paper, a design and fabrication of miniaturized 5.3 GHz reflection type $360^{\circ}$ analog phase shifter with branch line coupler and $360^{\circ}$ variable reactance load. In order to miniaturize phase shifter, novel branch line coupler is proposed. The novel branch line coupler is miniaturized using transformation of transmission line to T and ${\pi}$ type equivalent circuit. The miniaturized branch line coupler has small size of above 50 % compared with conventional branch line coupler. For wide phase shift range, $360^{\circ}$ variable reactance load structure is adopted. Especially, the structure was improved for linear phase shift by adding transmission line which acts as an impedance transformer. The improved structure was miniaturized using the equivalent lumped-element of transmission line. The fabricated phase shifter with $15{\times}15mm^2$ shows wide phase shift of above $480^{\circ}$, the insertion loss of -4~-6 dB and the reflection loss of below -20 dB at 5.3 GHz under 0~10 V control voltage range.

C00rdinated Testing between transformer Tap Selection and Inverter Voilage Control in the PV Distributed Generation system (태양광 분산 발전 시스템의 계통연계용 변압기탭 선정과 인버터전압조정 협조시험)

  • Yoon, kap koo;CHO, SeongSoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1098-1099
    • /
    • 2015
  • ${\bullet}$ 시험대상: 영월태양광 4,990kW(998kW ${\times}$ 5호) ${\bullet}$ 13.07.31 연계기술검토의뢰 ${\bullet}$ 13.08.28 한전검토결과: 인근변전소 영월S/S(40MW) 초과로 10.8km 지점의 평창 D/L 평창간 347호 주진S/S에 다음의 보완대책과 연계 권고 ${\cdot}$ 문제점: 적정전압이탈 및 순시전압변동률 유지불가 ${\cdot}$ 연계기준만족을 위해 한전에서 제시한 보완대책 : 계통용량증설(설비보강), 연계용량 감소 및 전용선로 연계 ${\bullet}$ 14.01.09 분산형설치자의 용역사(에이스기술단)에서 송배전용전기설비 이용규정과 연계기준 만족을 위한 보완대책 제안 ${\cdot}$ 태양광발전시스템 인버터 자동전압(역률/무효전력) 조정기능 및 감시설비 구비 ${\cdot}$ 최적 공통연결점 선정: 분산형전원으로 부터 전기적으로 가장 가까운 영월D/L 영월S/S측에 개폐장치설치 하고 주진S/S 측으로 연계 ${\bullet}$ 14.01.29~06.19 한전(전력연구원)의 유효성 검토 ${\cdot}$ 보완대책 기술적 유효(실증시험 시행 후 시행공문 발송 예정) ${\bullet}$ 14.08.08 송배전용전기설비 이용규정 개정에 따른 협의 ${\cdot}$ 변압기 대당 20MW에서 25MW ${\cdot}$ 변전소 전체 60MW에서 75MW까지 허용 ${\cdot}$ 영월 S/S 측 문곡/영월 D/L 연계 공사 협의 ${\bullet}$ 14.10.04 사용전검사, 한전계통연계운전 시작 ${\bullet}$ 인버터 고정역률(99.9~100%) 운전 시험 ${\cdot}$ 14.11.21 22.9kV 계전기(SEL-751) 5대, 15분 간격 자료저장 ${\cdot}$ SEL-751/USB to RS232C/노트북 15분간격 측정(첨부) ${\bullet}$ 14.03.07 인버터 역률 95.0% 조정 15분간격 측정(첨부) ${\bullet}$ 변압기탭 선정과 인버터전압조정협조시험 계획 ${\cdot}$ 변압기탭을 현장에서 상하 1탭씩 변경 ${\cdot}$ 인버터역률을 인버터공급사에서 원격조정 ${\cdot}$ 22.9kV 보호계전기 SEL-751, 15분 간격 측정 ${\cdot}$ 인버터 370V 계전기 K-PAM DG3000/현장감시설비 연계 ${\cdot}$ 15분 간격 측정 저장 ${\cdot}$ 현장감시설비/인터넷 연결 원격측정(첨부예정)

  • PDF

A Study on change from an RTU-based substation to IEC 6 1850-based SA substation (RTU 기반 변전소의 IEC 61850 기반 SA 변전소로의 전환에 대한 실증 연구)

  • Yuk, Sim-Bok;Lee, Sung-Hwan;Kim, Chong-il
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.436-444
    • /
    • 2018
  • Currently, the new substation automation uses the international standard IEC 61850 communication protocol. KEPCO is also constructing a new substation based on IEC 61850 from 2013 through the pilot application and research and development starting from 2007. However, there are few cases where existing substations(Transformer, T/L GIS, D/L GIS, etc.) have been used, and RTU based substations operating systems have been changed to SA substations based on IEC 61850. Therefore, the introduction of IEC 61850 in existing substation facilities has the advantage of enhancing the substantiality of the substation by reusing existing facilities, improving the interoperability with the latest substations introduced, and converting existing substations into systems suitable for unmanned operation. In this paper, we introduce a case of changing the existing RTU based substation operation system to digital substation using IEC 61850 field information processor, Ethernet switch and SA operation system. Also, IEC 61850 client authentication program and Wireshark, which is a packet analysis tool, verify IEC 61850 conformance and its feasibility.

Input and Output Characteristics of Input Current Controlled Inverter Arc Welding Machine with High Efficiency (입력전류 제어형 고효율 인버터아크용접시스템의 입력 및 출력 특성연구)

  • 최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.358-369
    • /
    • 2000
  • Shielded metal arc welding machines with AC transformer have been widely used for thin-plate welding applications. Because of being bulky, heavy and of tap-changing property, so the SMAW's are changing to new power electronic circuits such as inverter circuit in order to reduce the system size and also to improve the welding performances at input output sides. The PWM inverter arc welding machine with diode rectifier has better output welding performances but it is has the plentiful harmonics and the lower input power factor. To solve these problems, input current-controlled scheme is considered for PWM inverter arc welding system, and then total input power factor is maintained to be more than 99%. Also a new combined control is proposed which can control both instantaeous welding output voltage and current under constant power condition, and as a result the variations of instantaneous current and voltage can be reduced to very narrow range in the V-I curve relationship, and hence the variance of welding current and voltage become so reduced. In addition the spatter generated during welding process is greatly reduced up to 70%. And the overall effiency can be improved up to 10%, which becomes higher when the load is lower.

  • PDF

A Study on Fault Characteristics of DFIG in Distribution Systems Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전의 배전계통 사고특성에 관한 연구)

  • Son, Joon-Ho;Kim, Byung-Ki;Jeon, Jin-Taek;Rho, Dae-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.