• Title/Summary/Keyword: transformation temperature

Search Result 1,017, Processing Time 0.025 seconds

Physical property control for a batch polymerization reactor

  • Kim, In-Sun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.263-266
    • /
    • 1996
  • A method to determine an optimal temperature trajectory that guarantees polymer products having controlled molecular weight distribution and desired values of molecular weight is presented. The coordinate transformation method and the optimal control theory are applied to a batch PMMA polymerization system to calculate the optimal temperature trajectory. Coordinate transformation method converts the original fixed-end-point, free-end-time problem to a free-end-point, fixed-end-time problem. The idea is that by making the reactor temperature track the optimal temperature trajectory one may be able to produce polymer products having the prespecified physical property in a minimum time. The on-line control experiments with the PID control algorithm have been conducted to establish the validity of the scheme proposed in this study. The experimental results show that prespecified polymer product could be obtained with tracking the calculated optimal temperature trajectory.

  • PDF

Fabrication of Sn and SnO2 Nanopowders by Low-Temperature Phase Transformation Method (저온상변태법을 이용한 주석 및 산화주석 나노말의 제조)

  • Lee Kun-Jae;Joo Yeon-Jun;So Yong-Dae;Kim Nam-Hoon;Lee Jai-Sung;Choa Yong-Ho
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.46-51
    • /
    • 2006
  • Through the volume change of Sn in a low-temperature phase transformation, the Sn nanopowder with high, purity, was fabricated by an economic and eco-friendly process. The fine cracks were spontaneously generated. in, Sn ingot, which was reduced to powders in the repetition of phase transformation. The Sn nanopowder with 50 run in size was obtained by the 24th repetitions of phase transformation by low-temperature and ultrasonic treatments. Also, the $SnO_2$ powder was fabricated by the oxidation of the produced Sn powder to the ingot and milled by the ultrasonic milling method. The $SnO_2$ nanopowder of 20 nm in size was fabricated after the milling for 180 h.

Elasto-Plastic Finite Element Analysis in Consideration of Phase Transformations (상변태를 고려한 탄소성 유한요소 해석)

  • Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.334-336
    • /
    • 2009
  • An elastic-plasticity model during the austenitic decomposition was derived and implemented to incorporate the two important deformation behaviors observed during the phase transformations: the volumetric strain and transformation induced plasticity due to the temperature change and phase transformation. To obtain transformed phase volume fractions during cooling, the fourth order Runge-Kutta method was used to solve the Kirkaldy's phase kinetics model which is function of temperature, austenitic grain size and chemical composition. The volumetric strain was calculated by considering the densities of constituent phases, while the transformation induced plasticity was based on the micro-plasticity due to the volume mismatch between soft austenitic phase and other harder phases. The constitutive equations were implemented into the implicit finite element software and a simple boundary value problem was chosen as a model problem to validate the effect of transformation plasticity on the deformation behavior of steel under cooling from high temperature. It was preliminary concluded that the transformation plasticity plays a critical role in relaxing the developed stress during forming and thus reducing the magnitude of springback.

  • PDF

A study on the mechanical properties of austempered low-alloy ductile cast iron (오스템퍼링한 低合金 球狀黑鉛鑄鐵의 機械的 性質에 관한 硏究)

  • 강명순;박흥식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1296-1302
    • /
    • 1988
  • The study has been carried out under various experimental conditions to investigate mechanical properties by the transformation conditions of austempered low-alloy ductile cast iron. The amount of retained austenite and bainite after quenching was determined by the X-ray diffractometer and the point counting method and which the microstructure was investigated by the S.E.M. The mechanical properties of austempered low-alloy ductile cast iron can be varried over a comparatively wide range by changing the transformation conditions. During isothermal transformation of austenite in the bainite region, low-alloy ductile cast iron austempered at holding time of 40 minute has the maximum volume fraction(24%) of retained austenite in the cast iron matrix and which optimum values of mechanical properties correspond to the maximum amount of retained austenite, which falls with decreasing transformation temperature. The low values of both tensile strength and elongation in the initial stage of bainite transformation can be explained by premature fracture of tensile specimens and the tensile strength, hardness and elongation do not change considerably after a certain period. With a decreasing transformation temperature the tensile strength increase while the elongation decrease, especially the elongation has the maximum value at temperature $370^{\circ}C$.

Phase Transformation and Mechanical Properties on Sintering Temperature of $\alpha$-SiC Manufactured by Pressureless Sintering ($\beta$-SiC의 상압소결시 소결온도에 따른 상전이와 기계적 특성 변화)

  • Ju, Jin-Young;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1433-1435
    • /
    • 2001
  • The mechanical and phase transformation of the cold isostatically pressed $\beta$-SiC ceramic were investigated as a function of the sintering temperature. The result of phase analysis revealed 6H, 4H, 3C and phase transformation between 3C and 4H showed over 2000$^{\circ}C$ and the $\beta$ ${\rightarrow}$ $\alpha$ phase transformation was in saturation at 2200$^{\circ}C$. The relative density and the mechanical properties of $\alpha$-SiC ceramic was increased with increased sintering temperature. The flexural strength showed the highest value of 230 MPa at 2200$^{\circ}C$. This reason is because crack was propagated through surface flaw. The fracture toughness showed the highest value of 4.2 $MPa{\cdot}m^{1/2}$ at 2200$^{\circ}C$.

  • PDF

Change of Phase Transformation Temperature at Fabricated Membrane using Sol-gel Method

  • Cheong, Hun;Choi, Duck-Kyun;Cheong, Deock-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.876-880
    • /
    • 2001
  • The supported and unsupported boehmite ($\gamma$-AlOOH) membranes were prepared using a boehmite sol. The supported membrane was consisted of a porcelain support, two intermediate $\alpha-{Al_2}{O_3}$ layers, and a top boehmite membrane. XRD patterns showed that the supported top membrane had a higher $\theta-$ to $\alpha-{Al_2}{O_3}$ transformation temperature compared to the unsupported membrane. This result was also confirmed from microstructural study of the membrane. The shift in the phase transformation temperature should be explained by difference of a stress generated in the supported top membrane due to interaction between the support layers and the top membrane.

  • PDF

Analysis of Phase Transformation and Temperature History during Hot Stamping Using the Finite Element Method (유한요소해석을 이용한 핫스탬핑 공정시 발생하는 온도 이력 및 상변태 해석)

  • Yoon, S.C.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.123-132
    • /
    • 2013
  • Hot stamping, which is the hot pressing of special steel sheet using a cold die, can combine ease of shaping with high strength mechanical properties due to the hardening effect of rapid quenching. In this paper, a thermo-mechanical analysis of hot stamping using the finite element method in conjunction with phase transformations was performed in order to investigate the plastic deformation behavior, temperature history, and mechanical properties of the stamped car part. We also conducted a fully coupled thermo-mechanical analysis during the stamping and rapid quenching process to obtain the mechanical properties with the consideration of the effects of plastic deformation and phase transformation on the temperature histories at each point in the part. The finite element analysis could provide key information concerning the temperature histories and the sheet mechanical properties when the phase transformation is properly considered. Such an analysis can also be used to determine the effect of cyclic cooling on the tooling.

Experimental study of NiTi shape memory alloy (NiTi 형상기억합금의 실험적 연구)

  • Yang Seung-Yong;Goo Byeong-Choon;Kim Hyung-Jin;Nam Tae-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.611-615
    • /
    • 2004
  • To obtain material properties of NiTi shape memory alloy showing pseudoelastic or shape memory effect, tensile test was conducted for various temperatures. Transformation temperature also was measured by using DSC(Differential Scanning Calorimeter), and crystallographic feature of transformation was observed by XRD(X-ray Diffraction).

  • PDF

Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability (높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

Effect of Pearlite Interlamellar Spacing on Impact Toughness and Ductile-Brittle Transition Temperature of Hypoeutectoid Steels (아공석강의 충격인성 및 연성-취성 천이온도에 미치는 펄라이트 층상간격의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated by varying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementite thickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate the correlation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructural analysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fraction increases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbed energy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energy slightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardly affected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferrite and cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasing transformation temperature have a contradictory role on absorbed energy.