• Title/Summary/Keyword: transformation temperature

Search Result 1,017, Processing Time 0.031 seconds

Numerical Modeling of the Transformation Temperature Effect on the Relaxation of Welding Residual Stress (용접 잔류응력 완화에 미치는 변태 온도의 영향에 관한 수치적 모델링)

  • Jang, Gyoung-Bok;Kang, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2552-2559
    • /
    • 2000
  • Most of ferrous b.c.c weld materials have martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is necessary to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions, i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. In this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis. In addition to, since the transformation temperature changes by the kind and control of alloying elements, the steel with many kinds of transformation temperature were selected and the effect of transformation on stress releasement was investigated by the numerical procedures considering phase transformation.

The Isothermal Phase Transformation by Low Temperature Aging in Y-TZP Powders (저온 열처리에 의한 Y-TZP 분말의 등온 상전이)

  • Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.971-978
    • /
    • 1990
  • The ifluence of transformability and stabilized effects in tetragonal phase on the isothermal phase transformation of Y-TZP at low temperature were investigated. The transformability of Y-TZP powders were gradually increased with calcination temeprature and reached maximum at critical temperature, but when the Y-TZP powders were calcined above critical temperature, transformability of Y-TZP were gradually decreased with increasing calcination temperature. It was concluded that maximum transformability was appeared because particle size effects decreased and constrain effects increased with calcined temperature. The isothermal phase transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amounts of transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amount of transformed monoclinic phase during aging decreased with increasing constrain effects. From these results, the mechanism of isothermal phase transformation and degradation behaviors at low temperature in Y-TZP was concluded that occurred by decreasing of constrain effects due to stress relaxation at grian boundary.

  • PDF

Thermo-mechanical Characteristics of High Temperature NITINOL Shape Memory Alloy (고온용 NITINOL 형상기억합금의 열적/기계적 특성 평가)

  • Yun, Seong-Ho;Sridhar Krishnan;Scott R. White
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.52-59
    • /
    • 2002
  • The thermo-mechanical characteristics of high temperature NITINOL shape memory alloy were evaluated using DSC with small samples and DMA with three-point bending specimens. The shape memory alloy of 54.4Ni/45.5Ti wt.% was used so that the phase transformation temperatures were in the range of 50~11$0^{\circ}C$. Two types of sample were tested in the experiments corresponding to as-received and annealed conditions. Simple beam bending theory was used to calculate the dynamic moduli of the shape memory alloy. According to the results, a large discrepancy in transformation temperatures was found between DSC and DMA techniques. Annealing treatment was found to suppress the R-phase transformation during cooling and the secondary plateau in the austenite transformation. Such a heat treatment was also significantly influenced to raise the transformation temperatures and the moduli of the shape memory alloy.

A Study on the Heat Transfer of the High Temperature Metals in Quenching - The Latent Heat of Phase Transformation and Cooling Curves - (고온강재의 담금질 전열에 관한 연구)

  • 윤석훈
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.321-327
    • /
    • 1991
  • Experiments of quenching were made with cylindrical specimens of carbon steel S45C of diameters from 12 to 30mm were performed. The specimens were heated by electric furnace and quenched by immersion method. In order to analyze the temperature profile(cooling curves) of carbon steel including the latent heat of phase transformation, nonlinear heat conduction problem was calculated by the numerical method of inverse heat conduction problem using the apparent heat capacity method. The difference between the calculated and the experimented cooling curves was caused by the latent heat of phase transformation, and the effects of the latent heat were especially manifest at the cooling curves of center of specimens. The temperature and the quantity of the latent heat of phase transformation depend on the cooling speed at A sub(1) transformation point, and the region for cooling speed to become zero was caused by the latent heat of phase transformation.

  • PDF

Characteristics of Tensile Deformation and Shape Recovery with Transformation Temperature Change in a Ni-Ti Alloy Wire (Ni-Ti계 합금 선재의 변태온도 변화에 따른 인장변형 및 회복 특성)

  • Choi, Y.G.;Kim, M.S.;Cho, W.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.307-313
    • /
    • 2008
  • The tensile deformation and shape recovery behaviors were studied in Ni-Ti shape memory wires showing different transformation characteristics by annealing at $200{\sim}600^{\circ}C$. Both R phase ${\rightarrow}$ B19' martensitic transformation at lower temperature and B2 ${\rightarrow}$ R phase transformation at higher temperature occurred in the shape memory wires annealed at $200{\sim}500^{\circ}C$. Transformation temperature and heat flow of B19' martensite increase but those of R phase main almost constant even with increasing annealing temperature. In the case of wires annealed and then cooled to $20^{\circ}C$, plateau on stress-strain curves in tensile testing can be observed due to the collapse of R phase variants and the formation of deformation-induced B19' martensite. In the case of wires annealed and then cooled to $-196^{\circ}C$, however, plateau on stress-strain curves does not appear and stress increases steadily with increasing tensile deformation. Comparing shape recovery rate with cooling temperature after annealing, shape recovery rate of the wire cooled to $20^{\circ}C$ is higher than that of the wire cooled to $-196^{\circ}C$ after annealing, and maximum shape recovery rate of 95% appears in the wire annealed at $400^{\circ}C$ and then cooled to $20^{\circ}C$. $R_s$ and $R_f$ temperatures measured during shape recovery tests are higher than $A_s$ and $A_f$ temperatures measured by DSC tests even at the same annealing temperature.

Effect of Isochronic Aging on Transformation Behavior in Ti-50.85at%Ni Alloy (Ti-50.85atNi 합금의 변태거동 및 형상기억특성 미치는 시효처리의 영향)

  • Kim, J.I.;Sung, J.H.;Kim, Y.H.;Lee, J.H.;Miyazaki, S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • Effect of isochronic aging on transformation behavior of Ti-50.85at%Ni alloy were investigated by differential scanning calorimeter (DSC). The martensitic transformation temperature increases with increasing annealing temperature until reaching a maximum, and then decreases with further increasing annealing temperature. This can be rationalized by interaction between the distribution of $Ti_3Ni_4$ precipitates and Ni content in the matrix. The R-phase transformation temperature increases with increasing annealing temperature until reaching a maximum, and then decreases with a further increase of annealing temperature. This is attributed to the change of Ni content in the matrix caused by precipitation of $Ti_3Ni_4$. The occurrence of the multiple-stage martensitic and R-phase transformation is attributed to precipitation-induced inhomogeneity of the matrix, both in terms of composition and of internal stress fields.

Effect of Prior Deformation on the Martensitic Transformation Temperature(Ms) and Reversed Martensitic Transformation Temperature(As) in Fe-Ni Alloy (Fe-Ni합금(合金)의 마르텐사이트변태온도(變態溫度)(Ms)와 역변태온도(逆變態溫度)(As)에 미치는 소성가공(塑性加工)의 영향(影響))

  • Shon, In-Jin;Nam, Kee-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.4
    • /
    • pp.41-52
    • /
    • 1990
  • This research has been performed in order to investigate the effect of prior deformation on the Ms temperature and reversed As of Fe-Ni alloy. The Ms temperature rose with increment of strain to 30% but lowered over 50%. It can be analysed that martensitic transformation was promoted by partial dislocation in low strain, but suppressed by dislocation cell structures in high strain. The As temperature was substantially increased with higher deformation to 20% but slowly above 50%. It may be caused that as the transition bands formed by deformation constrained shear strain, therefore austenitic transformation was hindered.

  • PDF

Effects of Microstructural Parameters on the Reduction of Area in Hyper-eutectoid Steel Wires (과공석 강선에서 미세조직 인자들이 단면감소율에 미치는 영향)

  • An, K.S.;Park, J.H.;Bae, H.J.;Nam, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.306-312
    • /
    • 2016
  • Effects of manufacturing conditions, such as austenitizing temperature, patenting temperature and carbon content in steels, on mechanical properties, especially on reduction of area (RA), of hyper-eutectoid steel wires were investigated. RA increased and then decreased with transformation temperature. This was attributed to the presence of abnormal structures in steels transformed at low transformation temperatures and the occurrence of shear cracking during tensile testing of steels transformed at high transformation temperatures. The increase of austenitizing temperature resulted in the increased austenite grain size and consequently the decrease of RA. The decrease of RA with increasing the carbon content in steels was attributed to the increased fraction of cleavage fracture in tensile fractured surfaces.

Phase Transformation and Mechanical Properties on Sintering Temperature of $\alpha$-SiC Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 $\alpha$-SiC의 소결온도에 따른 상전이와 기계적 특성)

  • 주진영;신용덕;박미림;이종덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.431-434
    • /
    • 2001
  • The mechanical and phase transformation of the cold isostatically pressed $\alpha$-SiC ceramic were investigated as a function of the sintering temperature. The result of phase analysis by XRD revealed 6H, 4H, 3C and phase transformation between 6H and 4H showed a sudden change over 200$0^{\circ}C$. However, the alongrightarrow$\beta$ reverse transformation did not occur to any sintering temperature. The relative density and the mechanical properties of $\alpha$-SiC ceramic was increased with increased sintering temperature. The flexural strength rapidly inclosed below 210$0^{\circ}C$ and showed the highest value of 410 MPa at 220$0^{\circ}C$. This reason is because crack was propagated through surface flaw. The fracture toughness showed the highest value of 3.3 MPa.m$_{1}$2/ at 220$0^{\circ}C$.

  • PDF

Effect of Reverse Transformation on the Microstructure and Retained Austenite Formation of 0.14C-6.SMn Alloy Steel (0.14C-6.5Mn 합금강의 미세조직과 잔류오스테나이트 형성에 미치는 역변태처리의 영향)

  • Song, K.H.;Lee, O.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • The present study aimed to develop the TRIP(transformation induced plasticity) aided high strength low carbon steel sheets using reverse transformation process. The cold-rolled 0.14C-6.5Mn steel was reverse-transformed by slow heating to intercritical temperature region and air cooling to room temperature. An excellant combination of tensile strength and elongation of $98.3kgf/mm^2$ and 44.4% appears. This combination comes from TRIP phenomena of retained austenite during deformation. The stability of retained austenite Is very Important for the good ductility and it depends on diffusion of carbon and manganese during reverse transformation. The air cooling after holding at intercritical temperature retards the formation of pearlite and provides the carbon enrichment in retained austenite, resulting the increase of elongation in cold-roiled TRIP steel.

  • PDF