• 제목/요약/키워드: transferase M1

검색결과 271건 처리시간 0.025초

Glutathione S-Transferase Activities of S-Type and L-Type Thioltransferases from Arabidopsis thaliana

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제33권2호
    • /
    • pp.179-183
    • /
    • 2000
  • The glutathione S-transferase (GST) activities of S-type and L-type thioltransferases (TTases), which are purified from the seeds and leaves of Arabidopsis thaliana, respectively, were identified and compared. The S-type and L-type TTases showed $K_m$ values of 9.72 mM and 3.18mM on 1-chloro-2,4-dinitrobenzene (CDNB), respectively, indicating the L-type TTase has higher affinity for CDNB. The GST activity of the L-type TTase was rapidly inactivated after being heated at $70^{\circ}C$ or higher. The GST activity of the S-type TTase remains active in a range of $30-90^{\circ}C$. $Hg^{2+}$ inhibited the GST activity of the S-type TTase, whereas $Ca^{2+}$ and $Cd^{2+}$ inhibited the GST activity of the L-type TTase. Our results suggest that the GST activities of two TTases of Arabidopsis thaliana may have different catalytic mechanisms. The importance of the co-existence of TTAse and GST activities in one protein remains to be elucidated.

  • PDF

Molecular Cloning and mRNA Expression a Glutathione S-Transferase cDNA from the Spider, Araneus ventricosus

  • Shin, Geun Ho;Kim, Hyung Suk;Kwon, Dong Wook;Lee, Jin Young;Byeon, Gyeong Min;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권1호
    • /
    • pp.65-71
    • /
    • 2004
  • A fat body-specific glutathione S-transferase cDMA was cloned from the spider, Araneus ventricosus. The cDNA encoding A. ventricosus glutathione S-transferase (AvGST) is 645 base pairs long with an open reading frame of 215 amino acid residues with a calculated molecular weight of approximately 24 kDa. Northern blot analysis showed the tissue-specifically expression of AvGST in the A. ventricosus fat body.

Preliminary X-ray Studies of a New Crystal form of 28 kDa Clonorchis sinensis Glutathione S-Transferase

  • Cho, Youn-Hye;Kim, Young-Kwan;Kim, Seung-Joon;Hong, Seong-Jong;Chung, Yong-Je
    • 한국결정학회지
    • /
    • 제16권2호
    • /
    • pp.138-140
    • /
    • 2005
  • A new crystal of helminth glutathione S-transferase, 28 kDa isozyme from Clonorchis sinensis has been grown from a 20% PEG MME 550 solution containing 50 mM $CaCl_{2}$ in 0.1 M bis-Tris buffer (pH 6.5) in $2{\sim}3$ days. The crystals diffract to $3.0{\AA}$ resolution and belong to the orthorhombic space group $P2_{1}2_{1}2_{1}$ with cell parameters $a=62.58{\AA},\;b=69.92{\AA},\;and\;c=339.67{\AA}$.

한국인 구강 편평세포암에서 Glutathione S-transferase와 CYP1A1 유전자의 다형성 (GENETIC POLYMORPHISMS OF THE GLUTATHIONE S-TRANSFERASE AND CYP1A1 GENES IN KOREAN ORAL SQUAMOUS CELL CARCINOMA)

  • 차인호;권종진;박광균
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권5호
    • /
    • pp.364-371
    • /
    • 2002
  • Many chemical compopunds are converted into reactive electrophilic metabolites by the oxidative(Phase I) enzymes, which are mainly cytochrome P-450 enzyme(CYPs). Phase II conjugating enzymes, such as glutathione S-transferase(GST), usually act as inactivation of enzymes. Genetic polymorphisms have been found to be associated with increased susceptibility to cancer of the lung, bladder, breast and colorectal. Many of the polymorphic genes of carcinogen metabolism show considerably different type of cancer among different ethnic groups as well as individuals within the same group. The aim of this study is (1) to establish the frequencies of genetic polymorphisms of GSTM1 and CYP1A1 in Korean oral squamous cell carcinoma(SCC), (2) to associate oral SCC with the risk of these genetic polymorphisms. The genetic polymorphisms of the GSTM1 and the CYP1A1 genes among 50 Korean oral SCC were analyzed using polymerase chain reaction(PCR). The results suggest that the homozygote and the mutant type of CYP1A1 MspI polymorphisms may be associated with genetic susceptibility to oral SCC in Korean. A combination of the GSTM1 null type with the homozygote(m1/m1), and the mutant(m2/m2) type of CYP1A1 MspI polymorphisms showed a relatively high risk of oral SCC in Korean. In the smoking group, the GSTM1 wild genotype may be the high risk factor of oral SCC in Korean. These data coincide with the hypothesis which states that different susceptibility to cancer of genetic polymorphisms exist among different ethnic group and different types of human cancer.

커피 폐기물 추출물의 효능에 관한 연구 (A Study of Effects of Coffee Waste Extracts obtained from Solvents)

  • 이광수;박경숙
    • 한국식품영양학회지
    • /
    • 제28권5호
    • /
    • pp.866-870
    • /
    • 2015
  • In this study, coffee waste was extracted with different solvents such as ethyl acetate, methylene chloride and methanol to investigate the total polyphenol contents, electron donating ability and the inhibitory effect on glutathione S-transferase. The total polyphenol contents were $3,060.61{\pm}357.12{\mu}g\;GAE/mL$ in ethyl acetate, $909.09{\pm}35.71{\mu}g\;GAE/mL$ in methylene chloride, and $1,602.27{\pm}30.36{\mu}g\;GAE/mL$ in methanol. The total polyphenol contents showed a significant difference (p<0.05) between the solvents. The electron donating ability was $80.20{\pm}1.45%$ for ethyl acetate, $81.94{\pm}0.45%$ for methylene chloride, and $85.14{\pm}1.53%$ for methanol. The electron donating abilities were significantly different (p<0.05) between the solvents. The inhibitory effect of the various extracts on glutathione S-transferase (% inhibition) was $92.12{\pm}0.56%$, $88.48{\pm}0245%$ with methylene chloride extract, and $90.85{\pm}0.14%$ with methanol extract. These too were significant different (p<0.05) between the solvents. The two portions of coffee waste extracts obtained from ethyl acetate and methanol showed meaningful results on the total polyphenol contents, and the inhibition effects on glutathione S-transferase. Therefore, they can be utilized to develop health care foods and can be applied as antioxidants for cosmeceuticals.

랫드 간 Epoxide Hydrolase와 Glutathione S-Transferase 유전자 발현에 미치는 Progesterone의 효과 (Progesterone Effects on Microsomal Epoxide Hydrolase and Glutathione S-transferease mRNA Levels in Rats)

  • 조주연;김상건
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.233-241
    • /
    • 1996
  • Previous studies have shown that glucocorticoid suppresses microsomal epoxide hydrolase(EH) gene expression and that EH expression is altered during pregnancy. The effects of progesterone on the expression of rat EH and certain glutathione S-transferase(GST) genes were examined in this study. Northern RNA blot analysis revealed that progesterone was effective in increasing hepatic EH mRNA levels at 12 h to 48 h after treatment with a maximal 9-fold increase being noted at 12 h time point. Nonetheless, multiple daily treatment with progesterone rather caused minimal relative increases in EH mRNA levels. GST Ya and Yb1/2 mRNA levels were also transiently elevated at 12 h after progesterone treatment, followed by gradual decreases from the maximal Increases at day 1, 2 and 5 post-treatment. These changes in EH and GST mRNA levels were noted only at a relatively high dose of progesterone. Furthermore, immunoblot analyses showed that rats treated with progesterone for 5 days failed to show EH or GST induction, indicating that progesterone-induced alterations in EH and GST mRNA levels do not reflect bona fide induction of the detoxifying enzymes. Concomitant progesterone treatment of rats with the known EH inducers including ketoconazole and clotrimazole failed to additively nor antagonistically alter EH mRNA levels. In contrast, dexamethasone substantially reduced ketoconazole- or clotrimazole-inducible EH expression. These results showed that progesterone stimulates the EH, GST Ya and Yb1/2 gene expression at early times followed by marked reduction in the RNA levels from the maximum after multiple treatment and that the changes in mRNA do not necessarily reflect induction of the proteins.

  • PDF

Geranyllinalool에 의한 LLC-PK1 세포내 스핑고지질 생합성 억제 (Inhibition of de Novo Sphingolipid Biosynthesis by Geranyllinalool in $LLC-PK_1$ Cells)

  • 조양혁;이용문
    • 약학회지
    • /
    • 제43권1호
    • /
    • pp.61-67
    • /
    • 1999
  • Geranyllinalool, a polyisoprenoid compound, was found to block the early biosynthetic pathway of sphingolipids in LLC-PKl cells. Sphinganine, an intermediate in sphingolipid biosynthetic pathway, was abruptly accumulated in LLC-PKl cells at $2{\;}{\mu}M$ of fumonisin B1(FB1), a specific inhibitor of sphinganine N-acyltransferase, for 24 hr. Geranyllinalool lowered the $B_1(FB_1)$, a specific inhibitor of sphinganine N-acyltransferase, for 24 hr. Geranyllinalool lowered th FB1 and $50{\;}\mu$M geranyllinalool. l-Cy-closerine, an inhibitor of serine-palmitoyl transferase, was used as a positive control to evaluate the inhibitory effect of geranyllinalool. These results suggest that geranyllinalool may inhibit the serine-palmitoyl transferase, the first enzyme in de novo sphingolipid biosynthesis, resulting in the altered regulation of sphingolipid metabolism.

  • PDF

Glutathione S-Transferase (GST) 유전자 다형성과 항정신병약물로 유발된 하지불안증후군의 연관 연구 (Association between Antipsychotic-Induced Restless Legs Syndrome and Glutathione S-Transferase Gst-M1, Gst-T1 and Gst-P1 Gene Polymorphisms)

  • 강승걸;박영민;김린;이헌정
    • 수면정신생리
    • /
    • 제22권1호
    • /
    • pp.25-29
    • /
    • 2015
  • 목 적 : 하지불안증후군(restless legs syndrome ; RLS)의 병인은 아직 불명확하지만, 유전적 질환으로 알려져 있다. 산화스트레스는 RLS, 지연성운동장애, 파킨슨병, 뚜렛장애 등의 운동장애에서 주요한 원인 중의 하나로 생각되고 있다. 본 연구에서는 조현병환자에서 항정신병약물에 의해 유발된 RLS 증상이 산화손상의 해독효소인 glutathione S-transferase (GST) 유전자의 다형성과 연관이 있는지를 밝히고자 하였다. 방 법 : International Restless Legs Syndrome Study Group의 진단기준으로 190명의 한국인 조현병 환자들을 대상으로 RLS에 대해서 평가하였다. 유전자형분석은 중합효소연쇄반응기법을 사용하여 GST-M1, GST-T1, GST-P1의 세 가지 단일염기다형성(single nucleotide polymorphism, SNP)에 대해서 시행되었다. 결 과 : RLS 증상군 96명과 무증상군 94명으로 피험자들을 분류하였다. GST-M1 (${\chi}^2=3.56$, p = 0.059), GST-T1 (${\chi}^2=0.51$, p = 0.476), GST-P1 (${\chi}^2=0.57$, p = 0.821)의 유전자형 빈도에 두 군간에 통계적으로 유의한 차이가 없었다. 유전자형에 따른 RLS 척도의 점수도 GST-M1 (t = -1.54, p = 0.125), GST-T1 (t = -0.02, p = 0.985), GST-P1 (F = 0.58, p = 0.560)의 세 가지 SNP에서 통계적으로 유의한 차이를 보이지 않았다. 결 론 : 본 연구의 결과 GST 유전자 다형성이 항정신병약물로 유발된 RLS 증상 발생의 민감성을 증가시킨다는 증거는 발견할 수 없었다. 산화손상과 관련된 다른 후보 유전자들에 대한 향후 연구가 필요할 것으로 사료된다.

Genetic Polymorphisms of Glutathione S-transferase M1 and Prostate Cancer Risk in Asians: A Meta-analysis of 18 Studies

  • Hu, Zheng-Hui;Lin, Yi-Wei;Xu, Xin;Chen, Hong;Mao, Ye-Qing;Wu, Jian;Zhu, Yi;Xu, Xiang-Lai;Xie, Li-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.393-398
    • /
    • 2013
  • Background: Many studies have investigated associations between the glutathione S-transferase M1 (GSTM1) null polymorphism and risk of prostate cancer, but the impact of GSTM1 in people who live in Asian countries is still unclear owing to inconsistencies across results. Methods: We searched the PubMed, Web of Science, Scopus, Ovid and CNKI databases for studies of associations between the GSTM1 null genotype and risk of prostate cancer in people who live in Asian countries, and estimated summary odds ratios (ORs) with 95% confidence intervals (95% CIs). Results: A total of 18 case-control studies with 2,172 cases and 3,258 controls were included in this meta-analysis, which showed the GSTM1 null genotype to be significantly associated with increased risk of prostate cancer in people who live in Asian countries (random-effects OR=1.74, 95% CI1.44-2.09, P<0.001). Similar results were found in East Asians (OR=1.41; 95% CI: 1.12-1.78; P=0.004) and Caucasians in Asia (OR=2.19; 95% CI: 1.85-2.60; P<0.001). No evidence of publication bias was observed. Conclusions: This meta-analysis of available data suggested that the GSTM1 null genotype does contribute to increased risk of prostate cancer in people who live in Asian countries.