• Title/Summary/Keyword: transfer mold

Search Result 199, Processing Time 0.031 seconds

Transfer Mold 법에 의한 전계 에미터 어레이 제작 및 특성

  • 조경제;이상윤;강승열
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.90-90
    • /
    • 1998
  • 전계 에미터 어레이(FEA)는 진공에서 전계률 인가하여 전극으로부터 전자률 방출시키는 전자원으로서, 마이크로파 소자 및 명판 디스플레이, 센서 둥에 이용된다 .. Transfer Mold 법 은 뾰족한 에미터 립과 게이트 절연막 및 게이트 전극 충올 형성한 후 유리와 같은 기판에 이전 시키는 방법으로, 이러한 방법은 Mold 형태 위에 코탱 충의 두께 조절과, 게이트와 립 높이 조절이 가능하며, 그리고 유리 기판 위에 접착하여 대면적의 평판 디스플레이를 제작 할 수 었다는 장점이 있다[1,2]. 본 연구에서는 일반적으로 사용되는 실리콘 기판올 습식 식 각하여 Mold률 제작하는 방법 대선에, 측벽 스페이스 구조률 이용한 새로운 방법의 Mold 형태률 이용하여 게이트률 가진 에마터 립올 제작하였다. 먼저 실리콘 기판 위에 산화막올 증착하고 그 위에 게이트 전극파 게이트 절연막을 LPCVD 방법으로 증착하여 구명 형태로 패터닝 한 후, BPSG(Boro Phospher Silicate Glass) 박막올 증착하여 고온에서 훌러 내려 뾰족한 형태의 주형(Mold)률 제작한 후 TiN율 증착하여 정전 접합(an여ic bon벼ng)이나 레 진(resine)둥으로 유리률 접합한 후 KOH 용액으로 실리콘 기판옵 뒷면부터 식각해 낸다. 그 다옴, 립과 게이트 위에 있는 절연막올 제거한 후 뾰족한 전계 에미터 어레이륭 제조하 였다. 자세한 제조 공정 및 제작된 에미터 립의 특성은 학회에서 발표될 예정이다.

  • PDF

A Study on the Thermal Stresses of the Glass Lens Mold Using in Progressive GMP Process (순차이송 GMP 방식용 유리렌즈 금형의 열응력에 관한 연구)

  • Chang, S.H.;Lee, Y.M.;Shin, G.H.;Yoon, G.S.;Jung, W.C.;Jung, T.S.;Heo, Y.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.289-292
    • /
    • 2007
  • To prevent the damage of glass lens molds and deterioration of glass lenses using in progressive GMP process, a thermal stress and a deformation of the glass lens molds at forming temperature should be considered in the design step. In this study, as a fundamental study to develop a multi cavity mold used in an aspheric glass lens molding, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally, using analysis results, we estimated the thermal stress in a glass lens mold and predicted a modified height of guide ring that determines the forming height of a glass lens.

  • PDF

Numerical Analysis of CO2-Based Rapid Mold Cooling Technology (CO2 기반 금형 급속 냉각기술의 수치해석적 연구 )

  • Jae Hyuk Choi
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.61-66
    • /
    • 2023
  • In this study, we developed a simulation methodology for a technology that rapidly cools molds by directly spraying them with CO2 in its liquefied gaseous state. Initially, a simulation verification process was conducted using ANSYS Fluent's heat transfer analysis based on temperature values measured in prior research experiments, ensuring a comparable temperature could be calculated. Subsequently, the validated analysis method was employed to evaluate design factors that exert the most significant influence on cooling. An evaluation was conducted based on three factors: part thickness, mold thickness, and the melting temperature of material. Using a full factorial design approach, a total of 27 analyses were completed and subsequently calculated through analysis of means. The impact assessment was carried out based on the temperature values at the product's core. The results indicated that the thickness of the mold had the highest influence, while the melting temperature of material had the least.

Determination of mass flow rate, jet temperature and heating time in mold surface heating technology using hot jet impingement (고온제트에 의한 금형표면 가열기법에서의 유량, 온도, 가열시간의 결정)

  • Choi, Sung-Ju;Yoo, Young-Eun;Kim, Sun-Kyoung
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.135-139
    • /
    • 2008
  • Development of surface heating technology using hot jet impingement onto mold inner surface for improvement of pattern transcription. This study is focused on how to control the parameters related to hot jet impingement. The mass flow rate, the jet temperature and the duration of the impingement are major parameters. The nozzle design and other geometric configurations also affect the heat transfer to the surface. In terms of heat transfer analysis, the most important number is the heat transfer coefficient, which is influenced by the mass flow rate, nozzle design, distance between the nozzle tip and the surface. In summary, several parametric studies using the developed model are conducted to investigate the effects of mass flow rate, jet temperature and Heating Time in Surface heating technology using hot jet impingement onto mold.

  • PDF

The Arrangement of Heaters for Rubber Injection Molds using FEM and Optimal Design Method (유한요소법과 최적설계 기법을 이용한 고무 사출 금형 히터 배치)

  • Kim, Myung-Hun;Han, Jeong-Young;Choi, Eun-Ho;Bae, Won-Byong;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Temperature control of a rubber injection mold is important for the dimensional accuracy of product. The main objective of this paper is to optimize the arrangement of heaters by FEM and optimal design method. Firstly, 3-dimensional transient heat transfer analysis was carried out for a square specimen mold. Results of FE analysis are a good agreement with the experimental results, showing about 1.22~7.22% error in temperature distribution. Secondly, we suggested the optimal method about an arrangement of heaters of rubber injection mold by using the optimal design technique. Distances between heater's center and the contact surface of mold, distances between heater's center and symmetric surface were considered as design variables. And the variances between the temperatures of cavity surfaces and their average temperature were used as the objective functions. Applying the optimal solution, the temperature variation was improved about 52.9~88.1 % compared to the existing mold. As a result of sensitivity analysis for design variables, design variables parallel to the direction of the split plane in mold affect the largest on the surface temperature variation in mold cavity.

An Experimental Study on Heat Transfer and Flow in Compression Molding of SMC (SMC 압축성형의 열 및 유동에 관한 실험적 연구)

  • 김기택;정진호;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2386-2395
    • /
    • 1994
  • An experimental study on heat transfer and flow in compression molding of clss-B and A SMC(Sheet Molding Compounds) in a flat plate and a cross-sectional T-shape was carried out. The temperature was measured with thermocouples at two locations in the 4 layered SMC charge and pressure was measured at the center of the top mold during compression molding. Three different mold speeds, 15, 45, 50 mm/min and two different mold temperature, $130^{\circ}C{\;}and{\;}150^{\circ}C$ were used for compression molding experiments. Experiments with different colored SMC layers were used to study flow patterns at various compression stages. In oder to predict the pressure and load in SMC compression molding, slab method was used. The predicted values of pressure and load from the slab analysis were compared well with the measured data.

Low Work Function and Sharp Field Emitter Arrays by Transfer Mold Fabrication Method

  • Nakamoto, Masayuki;Sato, Genta;Shiratori, Kohji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.1049-1052
    • /
    • 2007
  • Extremely sharp and uniform Transfer Mold FEAs with thin film low work function TiN emitter material have been fabricated by controlling the thickness of the coated emitter materials to realize high efficient, high reliable and low-cost vacuum nanoelectronic devices..Their tip radii are 8.3-13.8 nm. Turn-on electric fields of the Ni FEAs and TiN-FEAs resulted in the low electric field values of $31.6\;V/{\mu}m$ and $44.2V/{\mu}m$,respectively, at the short emitter/anode distance: less than $30\;{\mu}m$, which are lower than those of conventional FE As such as Spindt type FEAs and carbon nan otube FEAs The Transfer Metal Mold fabrication method is one of the best methods of changing emit ter materials with sharp and uniform emit ter shapes.

  • PDF

A Study on Heat Transfer in Sand Molds (사형(砂型)의 열전달(熱傳達)에 관(關)한 연구(硏究))

  • Lee, Jong-Nam;Kim, Kwang-Bea
    • Journal of Korea Foundry Society
    • /
    • v.2 no.1
    • /
    • pp.2-11
    • /
    • 1982
  • In order to investigate the relationship between the thermal characteristics of the various molds as green sand mold, dry sand mold, $CO_2$ mold and shell mold, and the solidification characteristics of molten metal, the thermal analysis of rarious molds and melt were performed. The structure of Al-Castings was a/so observed. Results obtained in this experiment were as follows : 1) The heating rate of the molds was increased in the order of green sand mold, $CO_2$ mold, dry sand mold and shell mold, On the other hand the solidification time of the melts was shortened in the order of dry sand mold castings, $CO_2$ mold castings, green sand mold castings and shell mold castings. 2) The arrest temperature period in the heating curve of the green sand mold was resulted from the eraporation of moisture contained in mold, which was transfered to the outer side of the mold. 3) The temperature fluctuation of the melt in the shell mold was considered to be resulted from the combution heat of resin contained in the mold. 4) The amounts of heat absorption of the molds were increased in the order of dry sand mold, $CO_2$ mold, green sand mold and shell mold. 5) The higher the solidification rate was, the longer was its shrinkage pipe and the finer its grain size.

  • PDF

Finite Element Analysis of Induction Heating Process for Development of Rapid Mold Heating System (급속 금형가열 시스템 개발을 위한 고주파 유도가열 과정의 유한요소해석)

  • Hwang, J.J.;Kwon, O.K.;Yun, J.H.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.113-119
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers a finite element analysis of the induction heating process which can rapidly raise mold temperature. To simulate the induction heating process, the electromagnetic field analysis and transient heat transfer analysis are required collectively. In this study, a coupled analysis connecting electromagnetic analysis with heat transfer simulation is carried out. The estimated temperature changes are compared with experimental measurements for various heating conditions.