• Title/Summary/Keyword: transfer infectivity

Search Result 9, Processing Time 0.024 seconds

Infectivity of Parngonimus westermani developing in a final host to another final host (종숙주에서 발육중인 폐흡충의 종숙주에 대함 감염력)

  • Yoon Kong;Hyun Jong Yang;Seung-Yull Cho
    • Parasites, Hosts and Diseases
    • /
    • v.32 no.4
    • /
    • pp.277-280
    • /
    • 1994
  • In the definitive hosts, metacercariae of Parofonimn westermani excyst in host duodenum, penetrate intestinal wall, migrate peritoneal and thoracic cavities, and develop to sexual maturity in 8 weeks. This study was undertaken to examine the age of the maturing p. westernnni when their infectivity to the other definitive hosts was retained. On 3, 7, 10, 14,21 and 28 days after feeding the metacercariae to cats through a gastric tube, the developing worms were harvested. The juveniles of different age were fed again to other experimental cats. One to 12 weeks after the oral-transfer infections, the experimental cats were examined for establishment of infections. In the cats to which 3- day and 7-day old juveniles (grown up to 1.4 mm long) were fed, 31.4% and 22.6% of the transferred worms were found infected. The worms of 10-28 days old were not infective. Early maturing stages grown up to 7 days maintained their infectivity to the other definitive hosts.

  • PDF

The Pear Black Necrotic Leaf Spot Disease Virus Transmitted by Talaromyces flavus Displays Pathogenicity Similar to Apple stem grooving virus Strains

  • Shim Hye-Kyung;Hwang Kyu-Hyon;Shim Chang-Ki;Son Su-Wan;Kim Dong-Giun;Choi Yong-Mun;Chung Young-Jae;Kim Dae-Hyun;Jee Hyeong-Jin;Lee Suk-Chan
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.255-259
    • /
    • 2006
  • The pathogenicity to pear trees and other experimental hosts of the Apple stem grooving virus Korean isolate (ASGV-K) carried by a fungal vector, Talaromyces flavus was examined. ASGV-harboring T. flavus induced mild symptoms on virus-free pears. Symptom severity was intermediate between pears showing typical PBNLS and virus-free pears. Ten cultivars of Phaseolus vulgaris showed 35%-90% infectivity by direct infiltration into leaves and roots by ASGV-harboring T. flavus. Application of fungal cultures to soils showed 0%-70% infectivity depending on the P. vulgaris cultivar. Sap extracted from ASGV-infected Chenopodium quinoa induced similar symptoms on P. vulgaris at 25 days after inoculation. Similar symptoms were also detected on P. vulgaris which were inoculated with ASGV-harboring T.flavus. When healthy P. vulgaris leaves were challenged with sap extracted from P. vulgaris leaves infected with ASGV-harboring T. flavus, typical symptoms were observed. These data suggest that T. flavus mediates the transfer of ASGV to host plants.

Gene Transfer into Chicken Embryos using Defective Retroviral Vectors Packaged with Vesicular Stomatitis Virus G Glycoprotein Envelopes (Vesicular Stomatitis Virus G Glycoprotein Envelope으로 포장된 Defective Retroviral Vector를 이용한 닭의 배로의 유전자 전이)

  • 권모선;임은정;허영태;이훈택;이영만;김태완
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.2
    • /
    • pp.171-180
    • /
    • 2001
  • Compared to other gene transfer system, the advantages of retrovirus-mediated gene transfer are technical ease, efficient expression and genetic stability. Despite the high potency of the retrovirus vector system in gene transfer, one of the drawbacks is a difficulty in concentration of virus stock. To overcome this problem, we tested a new retrovirus vector system producing the progeny retrovirus particles encapsidated with VSV-G (vesicular stomatitis virus G glycoprotein). The infectivity of this virus was not sacrificed by ultracentrifugal concentration and the host cell range extended from all mammalian to fish embryos. Virus titer after 1,000 x concentration was more than 10$^{8}$ CFU/ $m\ell$ on most of the target cell lines. We applied this pantropic viruses in transgenic chicken production by injecting the concentrated (100$\times$) stock into subgerminal cavity of stage X chicken embryos. The survival rate of chicken embryos after injection was about 20% and gene integration rate in surviving embryos was scored almost 100%. Analyses of RT-PCR and fluorescence microscopy, however, showed no evidence of the transgene expression.

  • PDF

Expression of the HSV-1 (F) Glycoprotein B Gene in Insect Cells Infected by HcNPV Recombinant

  • Cha, Soung-Chul;Kang, Hyun;Lee, Sook-Yeon;Park, Gap-Ju;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.355-362
    • /
    • 2000
  • The Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) gene in the pHLA-21 plasmid was inserted into a baculovirus (Hyphantria cunea nuclear polyhedrosis virus) expression vector (lacZ-HcNPV) to construct a recombinant virus gB-HcNPV expressing gB. Spodoptera frugiperda cells infected with this recombinant virus synthesized and processed gB of approximately 120 kDa, which cross-reacted with the monoclonal antibody to gB. The recombinant gB was identified on the membrane of the insect cells using an immunofluorescence assay. Antibodies to this recombinant raised in mice recognize the viral gB and neutralized the infectivity of the HSV-1 in vitro. These results show that the gB gene has the potential to be expressed in insect cells. They also demonstrate that it is possible to produce a mature protein by gene transfer in eukaryotic cells, and indicate the utility of the lacZ-HcNPV-insect cell system for producing and characterizing eukaryotic proteins. Furthermore, the neutralizing antibodies would appear to protect mice against HSV. Accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Ig G fusion 단백질을 사용한 리간드-수용체의 상호작용

  • 천혜경
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.143-145
    • /
    • 1994
  • Chimeric fusion proteins involving IgG have proven valuable in studying protein-protein interactions and may possess therapeutic applications as well. For example, three receptor subtypes for the natriuretic peptides, when fused to the Fc portion of human IgG ${\gamma}$ chain, were quantitatively and qualitatively indistinguishable from the native receptor, thus allowing detailed structure-function studies of the receptor. In an attempt to block human immunodeficiency virus infectivity with soluble derivatives of CD4, a CD4/IgG Fc chimeric molecule was shown to increase the plasma half life of soluble CD4 and possessed the added advantage of IgG Fc-mediated placental transfer. In the case of the KGFR, this approach provided a framework for dissection of its ligand binding domains and made it possible to demonstrate that high affinity binding sites for two ligands, aFGF and KGF, reside within different receptor Ig-like domains. Chimeric molecules fused to immunoglobulins would have the advantages of secretion from transfected cells as well as detection and purification from medium utilizing Staphylococcus aureus Protein A. In addition, where highly related receptors make their discrimination very hard due to the difficulties in generating specific immunochemical probes, IgG fusion protein with tailor-made specificities confers particular advantages to elucidate patterns of receptor distribution and expression. The approach described here may have general applications in defining ligand-receptor interactions as well as searching for specific agonists and antagonists of receptor function.

  • PDF

Pathogenicity of a Korean isolate of Pepper mild mottle virus and development of full-length cDNA clone for infectious in vitro transcripts

  • J.Y. Yoon;Park, J.K.;Y.M. Yu;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.143.3-144
    • /
    • 2003
  • A Korean isolate of Pepper mild mottle virus (PMMoV-Kr) was isolated from a diseased pepper crop in Chunchon, Korea. The isolate was biologically purified on Nicoticaa tabacum cv. Xanthi-nc by successive single local transfer steps, and propagated on N. tabacum cv. Samsun. PMMoV-Kr could systemically infect on N. glauca, N. benthmiana, N. occidentalis and Lycopersicon esculentum, which is typical of known isolates of PMMoV. PMMoV-Kr belongs to the pathotype P1,2 based on pepper-tobamoviral indicator experiments; Capsicn chinone harboring L3 gene revealed resistant (necrotic local lesion on inoculated leaf, HR) whereas L+, L1 and L2 pepper plants expressed susceptible reactions of mosaic systemic symptoms for the isolate. To confirm the pathology and delineate symptom determinant of the isolate, full-length cDNAs of PMMoV-Kr were amplified by RT-PCR with a primer set corresponding to the 5'- and 3'-ends of PMMoV. The RT-PCR molecules amplified from genome RNA of the isolate was cloned into the pUC18 vector. Full-length cDNA clones constructed under the control of the T7 RNA promoter could be successfully transcribed to produce in vitro transcript RNA. Infectivity of the capped transcripts and its progeny virus was verified by Western blot and RT-PCR analyses.

  • PDF

Expression of the E. coli LacZ Gene in Chicken Embryos Using Replication Defective Retroviral Vectors Packaged With Vesicular Stomatitis Virus G Glycoprotein Envelopes

  • Kim, Teoan;Lee, Young Man;Lee, Hoon Taek;Heo, Young Tae;Yom, Heng-Cherl;Kwon, Mo Sun;Koo, Bon Chul;Whang, Key;Roh, Kwang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2001
  • Despite the high potency of the retrovirus vector system in gene transfer, one of the main drawbacks of has been difficulty in preparing highly concentrated virus stock. Numerous efforts to boost the virus titer have ended in unsatisfactory results mainly due to fragile property of retrovirus envelope protein. In this study, to overcome this problem, we constructed our own retrovirus vector system producing vector viruses encapsulated with VSV-G (vesicular stomatitis virus G glycoprotein). Concentration process of the virus stock by ultracentrifuge did not sacrifice the virus infectivity, resulting in more than 108 to 109 CFU (colony forming unit) per ml on most of the target cell lines tested. Application of this high-titer retrovirus vector system was tested on chicken embryos. Injection of virus stock beneath the blastoderms of pre-incubated fertilized eggs resulted in chick embryos expressing E. coli LacZ gene with 100% efficiency. Therefore, our results suggest that it is possible to transfer the foreign gene into chicken embryo using our high-titer retrovirus vector.

High Level Production of Glycoprotein H of HSV-1 (F) Using HcNPV Vector System

  • Kang, Hyun;Cha, Soung-Chul;Han, You-Jin;Park, In-Ho;Lee, Min-Jung;Byun, Si-Myung;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.483-492
    • /
    • 2000
  • The Herpes simplex virus type 1 (HSV-1) strain F glycoprotein H (gH) gene in the pHLB-4 plasmid was recombinated into a baculovirus expression vector (lacZ-HcNPV) to construct a recombinant virus GH-HcNPV expressing gH. The sequences of gH and its expression were analyzed. The gH gene was located in the 6.41 kb BglII fragment. The open reading frame (ORF) of the gH gene was 2,517 bp and codes 838 amino acid residues. Insect cells infected with this recombinant virus synthesized a high level of the matured and gX-gH fusion protein with approximately 112 kDa. The fusion gH protein was localized on the membrane of the insect cells as seen by using immunofluorescence assay and accumulated in the cultured media by the SDS-PAGE and immunoprecipitation assays. The amino acid sequence presents additional characteristics compatible with the structure of a viral glycoprotein: signal peptide, putative glycosylation sites and a long C-terminal transmembrane sequence. Antibodies raised in mice to this recombinant protein recognized viral gH and neutralized the infectivity of HSV-1 in vitro. These results demonstrate that it is possible to produce a mature protein by gene transfer in eukaryotic cells, and indicate the utility of the HcNPV-insect cell system for producing and characterizing eukaryotic proteins. Furthermore, the neutralizing antibodies would appear to protect mice against HSV; accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Integration of a target gene into chromosomal genome of BF-2 cells using UV-inactivated snakehead retrovirus (SnRV)

  • Kwon, Se-Ryun;Nishizawa, Toyohiko;Yoshimizu, Mamoru
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.375-382
    • /
    • 2009
  • Integration and expression of a target gene into chromosomal genomes of host cell by retrovirus mediated gene transfer system usually require complicate and laborious procedures. In the present study, we investigate a simple method to integrate a target gene into genome of BF-2 cells using ultraviolet (UV)-inactivated snakehead retrovirus (SnRV), a fish retrovirus. First of all, an optimization of transfection condition was determined with BF-2 cells using Lipofectamine 2000 and Transome. Using 0.5 $\mu\ell$ Lipofectamine 2000 resulted in 33.8, 40.6 and 40.2% of transfection efficacy with high survival rate (minimum 80%) in 0.5, 1 and 2 $\mu{g}$ DNA, respectively, and those of Transome were all less than 5%. It was confirmed that UV-treatment for 5 min was enough to inactivate infectivity of SnRV. Next, a cassette composed of GFP (green fluorescent protein) gene flanked by LTR (long terminal repeats) sequences derived from SnRV was constructed and transfected into BF-2 cells followed by treatment with UV-inactivated SnRV for optimization of integration and expression of the cassette gene. As the results, the fluorescence was expressed in BF-2 cells treated with UV-inactivated SnRV 3 and 5 times, while there was no expression in BF-2 cells with once and non treatment. Accordingly, it was confirmed that GFP gene was integrated into chromosomal genome of BF-2 cells with UV-inactivated SnRV.