• 제목/요약/키워드: transcriptional silencing

검색결과 53건 처리시간 0.018초

Knockdown of HMGN5 Expression by RNA Interference Induces Cell Cycle Arrest in Human Lung Cancer Cells

  • Chen, Peng;Wang, Xiu-Li;Ma, Zhong-Sen;Xu, Zhong;Jia, Bo;Ren, Jin;Hu, Yu-Xin;Zhang, Qing-Hua;Ma, Tian-Gang;Yan, Bing-Di;Yan, Qing-Zhu;Li, Yan-Lei;Li, Zhen;Yu, Jin-Yan;Gao, Rong;Fan, Na;Li, Bo;Yang, Jun-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3223-3228
    • /
    • 2012
  • HMGN5 is a typical member of the HMGN (high mobility group nucleosome-binding protein) family which may function as a nucleosomal binding and transcriptional activating protein. Overexpression of HMGN5 has been observed in several human tumors but its role in tumorigenesis has not been fully clarified. To investigate its significance for human lung cancer progression, we successfully constructed a shRNA expression lentiviral vector in which sense and antisense sequences targeting the human HMGN5 were linked with a 9-nucleotide loop. Inhibitory effects of siRNA on endogenous HMGN5 gene expression and protein synthesis were demonstrated via real-time RT-PCR and western blotting. We found HMGN5 silencing to significantly inhibit A549 and H1299 cell proliferation assessed by MTT, BrdU incorporation and colony formation assays. Furthermore, flow cytometry analysis showed that specific knockdown of HMGN5 slowed down the cell cycle at the G0/G1 phase and decreased the populations of A549 and H1299 cells at the S and G2/M phases. Taken together, these results suggest that HMGN5 is directly involved in regulation cell proliferation in A549 and H1299 cells by influencing signaling pathways involved in cell cycle progression. Thus, our finding suggests that targeting HMGN5 may be an effective strategy for human lung cancer treatment.

Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes

  • Yeo, Hyunjin;Lee, Jeong Yeon;Kim, JuHwan;Ahn, Sung Shin;Jeong, Jeong You;Choi, Ji Hye;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.323-328
    • /
    • 2020
  • Matrix metalloproteinase 1 (MMP-1), a calcium-dependent zinccontaining collagenase, is involved in the initial degradation of native fibrillar collagen. Tissue necrosis factor-alpha (TNFα) is a pro-inflammatory cytokine that is rapidly produced by dermal fibroblasts, monocytes/macrophages, and keratinocytes and regulates inflammation and damaged-tissue remodeling. MMP-1 is induced by TNFα and plays a critical role in tissue remodeling and skin aging processes. However, the regulation of the MMP1 gene by TNFα is not fully understood. We aimed to find additional cis-acting elements involved in the regulation of TNFα-induced MMP1 gene transcription in addition to the nuclear factor-kappa B (NF-κB) and activator protein 1 (AP1) sites. Assessments of the 5'-regulatory region of the MMP1 gene, using a series of deletion constructs, revealed the requirement of the early growth response protein 1 (EGR-1)-binding sequence (EBS) in the proximal region for proper transcription by TNFα. Ectopic expression of EGR-1, a zinc-finger transcription factor that binds to G-C rich sequences, stimulated MMP1 promoter activity. The silencing of EGR-1 by RNA interference reduced TNFα-induced MMP-1 expression. EGR-1 directly binds to the proximal region and transactivates the MMP1 gene promoter. Mutation of the EBS within the MMP1 promoter abolished EGR-1-mediated MMP-1 promoter activation. These data suggest that EGR-1 is required for TNFα-induced MMP1 transcriptional activation. In addition, we found that all three MAPKs, ERK1/2, JNK, and p38 kinase, mediate TNFα-induced MMP-1 expression via EGR-1 upregulation. These results suggest that EGR-1 may represent a good target for the development of pharmaceutical agents to reduce inflammation-induced MMP-1 expression.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.