• 제목/요약/키워드: trajectory-planning

검색결과 314건 처리시간 0.03초

Building a mathematics model for lane-change technology of autonomous vehicles

  • Phuong, Pham Anh;Phap, Huynh Cong;Tho, Quach Hai
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.641-653
    • /
    • 2022
  • In the process of autonomous vehicle motion planning and to create comfort for vehicle occupants, factors that must be considered are the vehicle's safety features and the road's slipperiness and smoothness. In this paper, we build a mathematical model based on the combination of a genetic algorithm and a neural network to offer lane-change solutions of autonomous vehicles, focusing on human vehicle control skills. Traditional moving planning methods often use vehicle kinematic and dynamic constraints when creating lane-change trajectories for autonomous vehicles. When comparing this generated trajectory with a man-generated moving trajectory, however, there is in fact a significant difference. Therefore, to draw the optimal factors from the actual driver's lane-change operations, the solution in this paper builds the training data set for the moving planning process with lane change operation by humans with optimal elements. The simulation results are performed in a MATLAB simulation environment to demonstrate that the proposed solution operates effectively with optimal points such as operator maneuvers and improved comfort for passengers as well as creating a smooth and slippery lane-change trajectory.

로보트 운용조건을 포함한 가변구조 제어방식에 관한 연구 (A study on the variable structure control method including robot operational condition)

  • 이홍규;이범희;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.72-75
    • /
    • 1988
  • Due to the fact that the set point regulation scheme by the variable structure control method concerns only the initial and final locations of a manipulator, many constraints may exist in the application of path tracking with obstracle avoidance. The variable structure parameter should be selected in the trajectory planning step by satisfying the constraints of the travel time and the path deviations This paper presents the selection algorithm of the variable structure parameters with the constraints of the system dynamics and the travel time and the path deviation. This study makes unify the trajectory planning and tracking control using the variable structure control method.

  • PDF

Constant speed, variable ascension rate, helical trajectories for airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.73-105
    • /
    • 2018
  • A particular type of constant speed helical trajectory, with variable ascension rate, is proposed. Such trajectories are candidates of choice as motion primitives in automatic airplane trajectory planning; they can also be used by airplanes taking off or landing in limited space. The equations of motion for airplanes flying on such trajectories are exactly solvable. Their solution is presented, together with an analysis of the restrictions imposed on the geometrical parameters of the helical paths by the dynamical abilities of an airplane. The physical quantities taken into account are the airplane load factor, its lift coefficient, and the thrust its engines can produce. Formulas are provided for determining all the parameters of trajectories that would be flyable by a particular airplane, the final altitude reached, and the duration of the trajectory. It is shown how to construct speed interval tables, which would appreciably reduce the calculations to be done on board the airplane. Trajectories are characterized by their angle of inclination, their radius, and the rate of change of their inclination. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and the F-16 Fighting Falcon.

Gait Programming of Quadruped Bionic Robot

  • Li, Mingying;Jia, Chengbiao;Lee, Eung-Joo;Feng, Yiran
    • Journal of Multimedia Information System
    • /
    • 제8권2호
    • /
    • pp.121-130
    • /
    • 2021
  • Foot bionic robot could be supported and towed through a series of discrete footholds and be adapted to rugged terrain through attitude adjustment. The vibration isolation of the robot could decouple the fuselage from foot-end trajectories, thus, the robot walked smoothly even if in a significant terrain. The gait programming and foot end trajectory algorithm were simulated. The quadruped robot of parallel five linkages with eight degrees of freedom were tested. The kinematics model of the robot was established by setting the corresponding coordinate system. The forward and inverse kinematics of both supporting and swinging legs were analyzed, and the angle function of single leg driving joint was obtained. The trajectory planning of both supporting and swinging phases was carried out, based on the control strategy of compound cycloid foot-end trajectory planning algorithm with zero impact. The single leg was simulated in Matlab with the established kinematic model. Finally, the walking mode of the robot was studied according to bionics principles. The diagonal gait was simulated and verified through the foot-end trajectory and the kinematics.

反復 學習槪念을 利용한 두 臺의 로봇의 衝突回避 軌跡計劃 (Collision-Free Trajectory Planning for Dual Robot Arms Using Iterative Learning Concept)

  • 정낙영;서일홍;최동훈
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.69-77
    • /
    • 1991
  • 본 연구에서는 주로 약결합된 경우의 다로봇시스템에 대한 효과적인 운동조정 법을 개발하였다. 약결합된 경우의 다로봇시스템은 아크용접, 분사 도료, 금속면의 디버링, 복잡한 조립작업, 검사등 수많은 작업에 투입될 수 있다.그와 같은 작업들 은 대부분 연적경로제어(continuous path control)방법을 요구하고 있는데 다로봇시스 템인 경우 작업대 주위의 정지 혹은 이동 장애물이나 제로봇상호간의 충격포험성을 해 결할 수 있는 효과적인 장애물회피 능력을 추가적으로 요구하고 있다. 그리고 연적 경로제어 형태의 거의 대부분의 첨단부의 속도를 정속도로 유지해주어야만 한다. 따 라서 모든 로봇들을 지정된 경로의 이탈없이 가능한 최대등속도로 운동시키기 위한 다 로봇시스템의 충격회피운동제어 알고리즘을 개발하게되었다.

Delay Time Optimal Coordination Planning for Two Robot Systems

  • Lee, Ji-Hong;Nam, Heon-Seong;Joon Lyou
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권3호
    • /
    • pp.51-60
    • /
    • 1997
  • A practically applicable collision free trajectory planning technique for tow robot systems is proposed. The robot trajectories considered in this work are composed of many segments, an at the intersection points between segments robots stop to assemble, weld, ordo other jobs by the attached a end-effectors. The proposed method is based on the Planning-Coordination Decomposition where planning is to find a trajectory of each robot independently according to their tasks and coordination is to find a velocity modification profile to avoid collision with each other. To fully utilize the independently planned trajectories and to ensure no geometrical path deviation after coordination, we develop a simple technique added the minimal delay time to avoid collision just before moving along path segments. We determine the least delay time by the graphical method in the Coordination space where collisions and coordinations are easily visualized. We classify all possible cases into 3 group and derive the optimal solution for each group.

  • PDF

Intention-Oriented Itinerary Recommendation Through Bridging Physical Trajectories and Online Social Networks

  • Meng, Xiangxu;Lin, Xinye;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권12호
    • /
    • pp.3197-3218
    • /
    • 2012
  • Compared with traditional itinerary planning, intention-oriented itinerary recommendations can provide more flexible activity planning without requiring the user's predetermined destinations and is especially helpful for those in unfamiliar environments. The rank and classification of points of interest (POI) from location-based social networks (LBSN) are used to indicate different user intentions. The mining of vehicles' physical trajectories can provide exact civil traffic information for path planning. This paper proposes a POI category-based itinerary recommendation framework combining physical trajectories with LBSN. Specifically, a Voronoi graph-based GPS trajectory analysis method is utilized to build traffic information networks, and an ant colony algorithm for multi-object optimization is implemented to locate the most appropriate itineraries. We conduct experiments on datasets from the Foursquare and GeoLife projects. A test of users' satisfaction with the recommended items is also performed. Our results show that the satisfaction level reaches an average of 80%.

어선 항적데이터를 활용한 어업손실보상을 위한 조업일수 산출 방법 (A method of calculating the number of fishing operation days for fishery compensation using fishing vessel trajectory data)

  • 김광일;김근형;유상록;김석종
    • 수산해양기술연구
    • /
    • 제57권4호
    • /
    • pp.334-341
    • /
    • 2021
  • The fishery compensation by marine spatial planning such as routeing of ships and offshore wind farms is required objective data on whether fishing vessels are engaged in a target area. There has still been no research that calculated the number of fishing operation days scientifically. This study proposes a novel method for calculating the number of fishing operation days using the fishing trajectory data when investigating fishery compensation in marine spatial planning areas. It was calculated by multiplying the average reporting interval of trajectory data, the number of collected data, the status weighting factor, and the weighting factor for fishery compensation according to the location of each fishing vessel. In particular, the number of fishing operation days for the compensation of driftnet fishery was considered the daily average number of large vessels from the port and the fishery loss hours for avoiding collisions with them. The target area for applying the proposed method is the routeing area of ships of Jeju outer port. The yearly average fishing operation days were calculated from three years of data from 2017 to 2019. As a result of the study, the yearly average fishing operation days for the compensation of each fishing village fraternity varied from 0.0 to 39.0 days. The proposed method can be used for fishery compensation as an objective indicator in various marine spatial planning areas.

라그랑지 보간법을 이용한 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획 (Trajectory Planning for Torque Minimization of Robot Manipulators Using the Lagrange Interpolation Method)

  • 라로평;황순웅;한창수
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2370-2378
    • /
    • 2015
  • 본 논문에서는 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획을 위해 라그랑지 보간법을 이용한 Algorithm을 제안하였다. 이를 위해 로봇 매니퓰레이터의 위치에 대한 구속조건이 주어지고 안정성이 보장되어야 한다. 라그랑지 보간법의 Runge's 현상을 회피하기 위해 Chebyshev 보간점을 이용하여 시간 보간점을 설정하였고, 이에 대응하는 최적각도를 찾아내어 라그랑지 보간법을 이용한 매끄러운 관절의 각도, 속도, 가속도 궤적을 얻을 수 있다. 로봇 매니퓰레이터의 토크 소비 최적화를 위한 성능지표를 선정하였으며, 계산된 궤적을 통해 이 성능지표가 최소값을 가지도록 반복 계산하는 과정을 거친다. 이를 통해, 토크와 성능지표를 최소화 시키는 최적의 궤적을 얻을 수 있으며, 로봇 매니퓰레이터가 작업을 수행하기 위한 움직임의 안전성을 보장한다.

Time optimal trajectory planning for a robot system Under torque and impulse constraints.

  • Cho, Bang-Hyun;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1402-1407
    • /
    • 2004
  • Moving a fragile object from an initial point to a goal location in minimum time without damage is pursued in this paper. In order to achieve the goal, first of all, the range of maximum acceleration and velocity are specified, which the manipulator can generate dynamically on the path that is planned a priori considering the geometrical constraints. Later, considering the impulsive force constraint of the object, the range of maximum acceleration and velocity are going to be obtained to keep the object safe while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of the acceleration and velocity. This time optimal trajectory planning can be applied for real applications and is suitable for not only a continuous path but also a discrete path.

  • PDF