• Title/Summary/Keyword: trajectory operation

Search Result 182, Processing Time 0.028 seconds

A Study on the Safety-Maximizing Design of Exclusive Bus Lanes (안전성 제고를 위한 버스전용차로 디자인 연구)

  • Yang, Chul-Su
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.4
    • /
    • pp.21-32
    • /
    • 2012
  • Exclusive bus lane (EBL) is typically located in the roadway median, and is accessed by weaving across the GPLs(general purpose lanes) before entering from the left lane of the GPLs. To maximize the potential for successful EBL operations, a critical design issue that requires special attention is the length of bus weaving section before entering EBL. The process of developing guidelines for the length of bus weaving section can be supported by a sensitivity analysis of performance measure (safety) with respect to the bus weaving distance. However, field data are difficult to obtain due to inherent complexity in creating performance measure (safety) samples under various interesting flows and bus weaving distance that are keys to research success. In this paper, VISSIM simulation is applied to simulate the operation of roadway weaving areas with EBL, and based on vehicle trajectory data from microscopic traffic simulation models, the Surrogate Safety Assessment Model (SSAM) computes the number of surrogate conflicts (or degree of safety) with respect to the bus weaving distance. Then, a multiple linear regression (MLR) model using safety data (number of surrogate conflicts) is developed. Finally, guidelines for bus weaving distance are established based on the developed MLR. Developed guidelines explicitly indicate that a longer bus weaving distance is required to maintain desired safety as weaving volume increases.

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

Autonomous Ship's Remote Operation Situation Occurrence Probability Estimation Model based on Navigation Areas (운항 해역별 자율운항선박 원격운항 상황 발생 확률 추산 시뮬레이션 모델)

  • Taewoong Hwang;Taemin Hwang;Dain Lee;Hyeinn Park;Ik-Hyun Youn
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.910-914
    • /
    • 2023
  • With the technological innovation owing to the 4th industrial revolution, the maritime transportation is rapidly being developed with autonomous ships and systems. Particularly, autonomous ships will partially replace the manned ships and navigation among them remotely upon the degree of autonomy suggested by IMO. Accordingly, the remote operator and related research have increased as well. However, the data on the minimum required manpower for remote operators are lacking such as considering engage required situations and their co-occurrence probability. Therefore, this study proposes a simulation model that calculates the number of remote engage required situations by defining restricted water area and remote engage required situation as close-quarter situations based on accumulated trajectory data of actual ships. The findings are expected to be used as background materials to establish the appropriate manpower distribution of remote operators in remote operation centers.

Development of a Practical Algorithm for en-route distance calculation (항로거리 산출을 위한 실용 알고리즘 개발)

  • GeonHwan Park;HyeJin Hong;JaeWoo Park;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.434-440
    • /
    • 2022
  • The ICAO (International civil aviation organization)recommended the implementation of the GANP (global air navigation plan) for strategic decision-making and air traffic management evaluation. In this study, we proposed a new method for finding the route distance from KPI (key performance indicator) 05 actual route extension presented for air traffic management evaluation. For this purpose, we collected trajectory data for one month and calculated the en-route distances using the methods presented in ICAO and the methods presented by this author. In the ICAO method, the intersection point must be estimated through the equation of a circle for radius 40 NM and the equation of a straight line for an inner and outer point close to a circle in the track data, and four flight distances are calculated to calculate the en-route distance. In the method presented in this study, two flight distances are calculated without estimating the intersection point to calculate the en-route distance. To determine the error between the two methods, we used the performance evaluation index RMSE (root mean square error) and the determination factor R2 of the regression model.

Modification of the Existing Binders for Highly-Shattering, Short-Stem Rice Varieties (II) (탈립성(脱粒性), 단간종(短稈種)인 통일계품종(統一系品種)에 적합(適合)한 바인더의 개량(改良) 개발(開発)에 관(関)한 연구(硏究) (II))

  • Chung, C.J.;Choi, H.S.;Ryu, K.H.;Koh, H.K.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.18-25
    • /
    • 1983
  • The binders introduced in Korea were originally designed to be used for Japonica varieties which have realtively long stem and are highly resistant to shattering. In order to use it for Tongil varieties which are short and easy to be shattered, mechanical modifications are necessary to reduce a grain loss incurred during its operation. This study was intended to investigate the binding unit, one of the major factors affecting grain losses. The binding parts of three binders used in Korea were analyzed and the grain loss was experimentally assessed for these binders. The results obtained from this study are summarized as follows: 1. From the motion analysis of discharge mechanism, the trajectory of the discharge arm appeared to be either circular or skewed elliptic. The velocity of a circular path mechanism was constant and smaller than that of a skewed elliptic path mechanism. The discharge grain loss of the former was about twice less than that of the latter. 2. It was found that the grain loss incurred due to the collision of the paddy bundles and ground was considerably high for Tongil varieties. The auxiliary discharge bar gave a significant influence on the motion and posture of the bundles, and the degree of impact on ground. 3. The installation of an auxiliary bar, which guides the paddy bundles smoothly to ground in order to reduce impact when the bundles fall down on ground, appeared to be very effective since the grain losses could be decreased by about 1.6 percentage point. However, the guide bar should be installed after some mechanical modification to reduce the velocity of discharge arm has been made.

  • PDF

Estimation of Retained Rate in Open-water Sediment Disposal (개방수역 퇴적물 처리에서 유보율의 평가)

  • Shin, Hosung;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.49-60
    • /
    • 2015
  • Open-water sediment disposal has many applications in costal construction. Dumping of sediment in open water can be divided into descending stage under water and sedimentation stage on the seabed, and retained rate is evaluated from analyzed results of these two successive stages. Descending particle cloud have two distinct thermal and swam phase, and trajectory equations for each phase are derived to describe settling velocity and radius of particle cloud. For sedimentation stage, a numerical simulator is used to calculate growth factors for particle fiction angle and current velocity. Retained rate is defined as a mass rate of remained sediment inside the circle which has a center at dumping point on the sea level and user-defined effective radius. Retained rate map for Singapore coast is presented with water depth of 20 m, current velocity of 0.0~1.5 m/s, and effective radius of 5 m. It will decrease sediment mass loss during disposal operation and minimize surrounding environmental pollution.

Implementation of Airborne Multi-Function Radar Including Attitude Maneuvering (자세 기동을 고려한 항공기 탑재 다기능 레이다 통합 시뮬레이터 구현)

  • Ko, Jae-Youl;Park, Soon-Seo;Choi, Han-Lim;Ahn, Jae-Myung;Lee, Sung-Won;Lee, Dong-Hui;Yoon, Jung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2017
  • In this paper, a simulation test bed is presented which operates to provide full-scale simulation of airborne multi-function phased array radars. This simulation test bed provides a capability to evaluate the target tracking performance. To realize aircraft operation scenario, we developed 6DOF aircraft dynamics model which can generate trajectories and attitude of an aircraft. This procedure includes steady state flight trim search, autopilot design, and aircraft guidance command design. Also, the radar-environment integrated simulator includes target detection/measurement model and tracking filter. Developed simulator is validated by creating an air-to-air scenario.

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a Trajectory of Complex Power (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘)

  • Kim Chul-Hwan;Heo Jeong-Yong;Kwon O-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.217-225
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now. Most common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of-step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm which is based on the complex power and the estimated mechanical power, is presented. This algorithm may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

Implementation of Slaving Data Processing Function for Mission Control System in Space Center (우주센터 발사통제시스템의 추적연동정보 처리기능 구현)

  • Choi, Yong-Tae;Ra, Sung-Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.31-39
    • /
    • 2014
  • In KSLV-I launch mission, real-time data from the tracking stations are acquired, processed and distributed by the Mission Control System to the user group who needed to monitor processed data for safety and flight monitoring purposes. The processed trajectory data by the mission control system is sent to each tracking system for target designation in case of tracking failure. Also, the processed data are used for decision making for flight termination when anomalies occur during flight of the launch vehicle. In this paper, we propose the processing mechanism of slaving data which plays a key role of launch vehicle tracking mission. The best position data is selected by predefined logic and current status after every available position data are acquired and pre-processed. And, the slaving data is distributed to each tracking stations through time delay is compensated by extrapolation. For the accurate processing, operation timing of every procesing modules are triggered by time-tick signal(25ms period) which is driven from UTC(Universial Time Coordinates) time. To evaluate the proposed method, we compared slaving data to the position data which received by tracking radar. The experiments show the average difference value is below 0.01 degree.

Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.203-216
    • /
    • 2011
  • To prepare for a future Korean lunar orbiter mission, semi-optimal lunar capture orbits using finite thrust are designed and analyzed. Finite burn delta-V losses during lunar capture sequence are also analyzed by comparing those with values derived with impulsive thrusts in previous research. To design a hypothetical lunar capture sequence, two different intermediate capture orbits having orbital periods of about 12 hours and 3.5 hours are assumed, and final mission operation orbit around the Moon is assumed to be 100 km altitude with 90 degree of inclination. For the performance of the on-board thruster, three different performances (150 N with $I_{sp}$ of 200 seconds, 300 N with $I_{sp}$ of 250 seconds, 450 N with $I_{sp}$ of 300 seconds) are assumed, to provide a broad range of estimates of delta-V losses. As expected, it is found that the finite burn-arc sweeps almost symmetric orbital portions with respect to the perilune vector to minimize the delta-Vs required to achieve the final orbit. In addition, a difference of up to about 2% delta-V can occur during the lunar capture sequences with the use of assumed engine configurations, compared to scenarios with impulsive thrust. However, these delta-V losses will differ for every assumed lunar explorer's on-board thrust capability. Therefore, at the early stage of mission planning, careful consideration must be made while estimating mission budgets, particularly if the preliminary mission studies were assumed using impulsive thrust. The results provided in this paper are expected to lead to further progress in the design field of Korea's lunar orbiter mission, particularly the lunar capture sequences using finite thrust.