• Title/Summary/Keyword: trajectory indexing

Search Result 32, Processing Time 0.027 seconds

Signature-based Indexing Scheme for Similar Sub-Trajectory Retrieval of Moving Objects (이동 객체의 유사 부분궤적 검색을 위한 시그니쳐-기반 색인 기법)

  • Shim, Choon-Bo;Chang, Jae-Woo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Recently, there have been researches on storage and retrieval technique of moving objects, which are highly concerned by user in database application area such as video databases, spatio-temporal databases, and mobile databases. In this paper, we propose a new signature-based indexing scheme which supports similar sub-trajectory retrieval at well as good retrieval performance on moving objects trajectories. Our signature-based indexing scheme is classified into concatenated signature-based indexing scheme for similar sub-trajectory retrieval, entitled CISR scheme and superimposed signature-based indexing scheme for similar sub-trajectory retrieval, entitled SISR scheme according to generation method of trajectory signature based on trajectory data of moving object. Our indexing scheme can improve retrieval performance by reducing a large number of disk access on data file because it first scans all signatures and does filtering before accessing the data file. In addition, we can encourage retrieval efficiency by appling k-warping algorithm to measure the similarity between query trajectory and data trajectory. Final]y, we evaluate the performance on sequential scan method(SeqScan), CISR scheme, and SISR scheme in terms of data insertion time, retrieval time, and storage overhead. We show from our experimental results that both CISR scheme and SISR scheme are better than sequential scan in terms of retrieval performance and SISR scheme is especially superior to the CISR scheme.

Performance Analysis of Tree-based Indexing Scheme for Trajectories Processing of Moving Objects (이동객체의 궤적처리를 위한 트리기반 색인기법의 성능분석)

  • Shim, Choon-Bo;Shin, Yong-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.1-14
    • /
    • 2004
  • In this study, we propose Linktable based on extended TB-Tree(LTB-Tree) which can improve the performance of existing TB (Trajectory-Bundle)-tree proposed for indexing the trajectory of moving objects in GIS Applications. In addition, in order to evaluate proposed indexing scheme, we take into account as follows. At first, we select existing R*-tree, TB-tree, and LTB-tree as the subject of performance evaluation. Secondly, we make use of random data set and real data set as experimental data. Thirdly, we evaluate the performance with respect to the variation of size of memory buffer by considering the restriction of available memory of a given system. Fourth, we test them by using the experimental data set with a variation of data distribution. Finally, we think over insertion and retrieval performance of trajectory query and range query as experimental measures. The experimental results show that the proposed indexing scheme, LTB-tree, gains better performance than traditional other schemes with respect to the insertion and retrieval of trajectory query.

  • PDF

Design of Trajectory Data Indexing and Query Processing for Real-Time LBS in MapReduce Environments (MapReduce 환경에서의 실시간 LBS를 위한 이동궤적 데이터 색인 및 검색 시스템 설계)

  • Chung, Jaehwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2013
  • In recent, proliferation of mobile smart devices have led to big-data era, the importance of location-based services is increasing due to the exponential growth of trajectory related data. In order to process trajectory data, parallel processing platforms such as cloud computing and MapReduce are necessary. Currently, the researches based on MapReduce are on progress, but due to the MapReduce's properties in using batch processing and simple key-value structure, applying MapReduce framework for real time LBS is difficult. Therefore, in this research we propose a suitable system design on efficient indexing and search techniques for real time service based on detailed analysis on the properties of MapReduce.

Similarity Measurement Method of Trajectory using Indexing Information of Moving Object in Video (비디오 내 이동 객체의 색인 정보를 이용한 궤적 유사도 측정 기법)

  • Kim, Jeong In;Choi, Chang;Kim, Pan Koo
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.43-47
    • /
    • 2012
  • The recent proliferation of multimedia data necessitates the effectively and efficiently retrieving of multimedia data. These research not only focus on the retrieving methods of text matching but also on using the multimedia data features. Therefore, this paper is a similarity measurement method of trajectory using indexing information of moving object in video, for similarity measurement. This method consists of 2 steps. Firstly, Video data is processed indexing for trajectory extraction of moving objects using CCTV. Finally, we describe to compare DTW(Dynamic Time Warping) to TSR(Tansent Space Representation) algorithm.

  • PDF

ECoMOT : An Efficient Content-based Multimedia Information Retrieval System Using Moving Objects' Trajectories in Video Data (ECoMOT : 비디오 데이터내의 이동체의 제적을 이용한 효율적인 내용 기반 멀티미디어 정보검색 시스템)

  • Shim Choon-Bo;Chang Jae-Woo;Shin Yong-Won;Park Byung-Rae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.47-56
    • /
    • 2005
  • A moving object has a various features that its spatial location, shape, and size are changed as time goes. In addition, the moving object has both temporal feature and spatial feature. It is one of the highly interested feature information in video data. In this paper, we propose an efficient content-based multimedia information retrieval system, so tailed ECoMOT which enables user to retrieve video data by using a trajectory information of moving objects in video data. The ECoMOT includes several novel techniques to achieve content-based retrieval using moving objects' trajectories : (1) Muitiple trajectory modeling technique to model the multiple trajectories composed of several moving objects; (2) Multiple similar trajectory retrieval technique to retrieve more similar trajectories by measuring similarity between a given two trajectories composed of several moving objects; (3) Superimposed signature-based trajectory indexing technique to effectively search corresponding trajectories from a large trajectory databases; (4) convenient trajectory extraction, query generation, and retrieval interface based on graphic user interface

Design and Implementation of Trajectory Preservation Indices for Location Based Query Processing (위치 기반 질의 처리를 위한 궤적 보존 색인의 설계 및 구현)

  • Lim, Duk-Sung;Hong, Bong-Hee
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.67-78
    • /
    • 2008
  • With the rapid development of wireless communication and mobile equipment, many applications for location-based services have been emerging. Moving objects such as vehicles and ships change their positions over time. Moving objects have their moving path, called the trajectory, because they move continuously. To monitor the trajectory of moving objects in a large scale database system, an efficient Indexing scheme to processed queries related to trajectories is required. In this paper, we focus on the issues of minimizing the dead space of index structures. The Minimum Bounding Boxes (MBBs) of non-leaf nodes in trajectory-preserving indexing schemes have large amounts of dead space since trajectory preservation is achieved at the sacrifice of the spatial locality of trajectories. In this thesis, we propose entry relocating techniques to reduce dead space and overlaps in non-leaf nodes. we present performance studies that compare the proposed index schemes with the TB-tree and the R*-tree under a varying set of spatio-temporal queries.

  • PDF

An Efficient Indexing Technique for Location Prediction of Moving Objects in the Road Network Environment (도로 네트워크 환경에서 이동 객체 위치 예측을 위한 효율적인 인덱싱 기법)

  • Hong, Dong-Suk;Kim, Dong-Oh;Lee, Kang-Jun;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • The necessity of future index is increasing to predict the future location of moving objects promptly for various location-based services. A representative research topic related to future index is the probability trajectory prediction technique that improves reliability using the past trajectory information of moving objects in the road network environment. However, the prediction performance of this technique is lowered by the heavy load of extensive future trajectory search in long-range future queries, and its index maintenance cost is high due to the frequent update of future trajectory. Thus, this paper proposes the Probability Cell Trajectory-Tree (PCT-Tree), a cell-based future indexing technique for efficient long-range future location prediction. The PCT-Tree reduces the size of index by rebuilding the probability of extensive past trajectories in the unit of cell, and improves the prediction performance of long-range future queries. In addition, it predicts reliable future trajectories using information on past trajectories and, by doing so, minimizes the cost of communication resulting from errors in future trajectory prediction and the cost of index rebuilding for updating future trajectories. Through experiment, we proved the superiority of the PCT-Tree over existing indexing techniques in the performance of long-range future queries.

  • PDF

Mobile Device User Trajectory Analysis and Route Recommendation Method based on Intersection Region Indexing (교차점 기반 구역 인덱싱을 이용한 모바일 장치 사용자 이동 궤적 분석 및 경로 추천 방법)

  • Kwak, Kwangjin;Kim, Jeongjoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.1 no.1
    • /
    • pp.79-85
    • /
    • 2015
  • According to the growing use of the personal GPS in the mobile device recently, the LBS (Local bases service), which processes and refines the GPS information, such as a position-tracking service, a public safety service, a local based information service, has increased steadily. Due to the refraction or reflection of GPS, however, it is impossible to use GPS around or in buildings. Therefore, it is necessary to correct the errors of GPS. We propose the method which corrects the errors of GPS and creates the refined trajectory using intersection region indexing. After analyzing the trajectory, receiving trajectories from many people and identifying the similarity between of trajectories, we will recommend the favorite route and useful information such as restaurant, convenience store, bus station and emergency call service.

An Improved Split Algorithm for Indexing of Moving Object Trajectories (이동 객체 궤적의 색인을 위한 개선된 분할 알고리즘)

  • Jeon, Hyun-Jun;Park, Ju-Hyun;Park, Hee-Suk;Cho, Woo-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.161-168
    • /
    • 2009
  • Recently, use of various position base servicesthat collect position information for moving object and utilize in real life is increasing by the development of wireless network technology. Accordingly, new index structures are required to efficiently retrieve the consecutive positions of moving objects. This paper addresses an improved trajectory split algorithm for the purpose of efficiently supporting spatio-temporal range queries using index structures that use Minimum Bounding Rectangles(MBR) as trajectory approximations. We consider volume of Extended Minimum Bounding Rectangles (EMBR) to be determined by average size of range queries. Also, Use a priority queue to speed up our process. This algorithm gives in general sub-optimal solutions with respect to search space. Our improved trajectory split algorithm is going to derive minimizing volume of EMBRs better than previously proposed split algorithm.

Trajectory Indexing for Efficient Processing of Range Queries (영역 질의의 효과적인 처리를 위한 궤적 인덱싱)

  • Cha, Chang-Il;Kim, Sang-Wook;Won, Jung-Im
    • The KIPS Transactions:PartD
    • /
    • v.16D no.4
    • /
    • pp.487-496
    • /
    • 2009
  • This paper addresses an indexing scheme capable of efficiently processing range queries in a large-scale trajectory database. After discussing the drawbacks of previous indexing schemes, we propose a new scheme that divides the temporal dimension into multiple time intervals and then, by this interval, builds an index for the line segments. Additionally, a supplementary index is built for the line segments within each time interval. This scheme can make a dramatic improvement in the performance of insert and search operations using a main memory index, particularly for the time interval consisting of the segments taken by those objects which are currently moving or have just completed their movements, as contrast to the previous schemes that store the index totally on the disk. Each time interval index is built as follows: First, the extent of the spatial dimension is divided onto multiple spatial cells to which the line segments are assigned evenly. We use a 2D-tree to maintain information on those cells. Then, for each cell, an additional 3D $R^*$-tree is created on the spatio-temporal space (x, y, t). Such a multi-level indexing strategy can cure the shortcomings of the legacy schemes. Performance results obtained from intensive experiments show that our scheme enhances the performance of retrieve operations by 3$\sim$10 times, with much less storage space.