The LBS (Location-Based Services) are valuable information services combined the location of moving object with various contents such as map, POI (point of Interest), route and so on. The must general service of LBS is route determination service and its applicable parts are FMS (Fleet Management System), travel advisory system and mobile navigation system. The core function of route determination service is determination of optimal route from source to destination in various environments. The MODB (Moving Object Database) system, core part of LBS composition systems, is able to manage current or past location information of moving object and massive trajectory information stored in MODB is value-added data in CRM, ERP and data mining part. Also this past trajectory information can be helpful to determine optimal route. In this paper, we suggest methods to determine optimal route by querying past trajectory information in MODB system and verify the effectiveness of suggested method.
International Journal of Computer Science & Network Security
/
제21권6호
/
pp.207-212
/
2021
Clustering Unlabeled Spatial-datasets to convert them to Labeled Spatial-datasets is a challenging task specially for geographical information systems. In this research study we investigated the NYC Taxi Limousine Commission dataset and discover that all of the spatial-temporal trajectory are unlabeled Spatial-datasets, which is in this case it is not suitable for any data mining tasks, such as classification and regression. Therefore, it is necessary to convert unlabeled Spatial-datasets into labeled Spatial-datasets. In this research study we are going to use the Clustering Technique to do this task for all the Trajectory datasets. A key difficulty for applying machine learning classification algorithms for many applications is that they require a lot of labeled datasets. Labeling a Big-data in many cases is a costly process. In this paper, we show the effectiveness of utilizing a Clustering Technique for labeling spatial data that leads to a high-accuracy classifier.
최근 데이터 양이 급증하면서 데이터 마이닝에 대한 연구가 활발하게 진행되고 있으며 특히 GPS 시스템, 감시시스템, 기상 관측 시스템과 같은 다양한 응용 시스템으로부터 수집된 데이터를 분석하고자 하는 시공간 데이터 마이닝 연구에 대한 관심이 더욱 높아지고 있다. 기존의 시공간 데이터 마이닝 연구들에서는 비시공간 데이터 기반의 일반적인 클러스터링 기법들을 그대로 적용하고 있으나 데이터의 속성이 다른 시공간 데이터 마이닝에서 기존의 알고리즘들이 어느 정도의 성능을 보장하는지, 데이터의 시공간 속성에 따라 적절한 마이닝 알고리즘을 선택하기 위한 기준이 무엇인지 등에 대한 연구는 미흡한 실정이다. 본 논문에서는 기존의 시공간 데이터 마이닝 연구에서 일반적으로 많이 사용되어 온 알고리즘인 SOM(Self-Organizing Map)을 기반으로 시공간 데이터 마이닝 모듈을 개발하고, 개발된 클러스터링 모듈의 성능을 K-means과 두 가지 응집 계층(Hierarchical Agglomerative) 알고리즘들과 균질도, 분리도, 반면영상 너비, 정확도의 네 가지 평가 기준을 기반으로 비교하였다. 또한 입력 데이터의 특성 가시화 및 클러스터링 결과의 정확한 분석을 위해 시공간 데이터 클러스터링을 위한 가시화 모듈을 개발하였다.
Variations in ambient atmospheric carbon monoxide(CO) observed at an inland mining site in the Indo-Gangetic plains, Jaduguda ($22^{\circ}38'N$, $86^{\circ}21'E$, 122m MSL, ~75 km away from the coast of the Bay of Bengal) during the Tsunami of 26 December 2004 were monitored. CO mixing ratio over this site was measured using a non-dispersive infrared analyzer (Monitor Europe Model 9830 B). Back trajectory analysis data obtained using NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model was also used for this study. Variations in CO mixing ratio at a coastal site, Thiruvananthapuram ($8^{\circ}29'N$, $76^{\circ}57'E$, located ~2 km from the Arabian Sea coast) have also been investigated using CO data retrieved from the Measurement Of Pollution In The Troposphere (MOPITT) instrument. Ground-based measurements indicated abnormal variations in CO mixing ratio at Jaduguda from 25 December 2004 evening (previous day of the Tsunami). MOPITT CO data showed an enhancement in CO mixing ratio over Thiruvananthapuram on the Tsunami day. Back trajectory analyses over Thiruvananthapuram and Jaduguda for a period of 10 days from $21^{st}$ to $30^{th}$ December 2004 depicted that there were unusual vertical movements of air from high altitudes from 25 December 2004 evening. CO as well as the back trajectory analyses data showed that the variations in the wind regimes and consequently wind driven transport are the most probable reasons for the enhancement in CO observed at Jaduguda and Thiruvananthapuram during the Tsunami.
모바일 환경의 대중화와 이를 위한 기반 기술의 발전으로 인하여 이동 객체들을 효과적으로 표현하고 분석하는 것이 중요한 문제로 대두되고 있다. 이러한 환경에서 이동 객체 궤적의 유사성 검색은 궤적에 대한 데이터 마이닝의 일부분으로 중요한 연구 분야중의 하나이다. 본 논문에서는 도로 네트워크상의 이동 객체 궤적을 위한 시공간 유사 궤적 검색 알고리즘을 제안한다. 이를 위하여 도로 네트워크상에서 두 이동 객체 궤적 사이의 시공간 거리를 정의하고, 이를 기반으로 궤적 사이의 시공간 유사도 측정 방법을 제안한다. 유사 궤적 알고리즘은 효율적인 검색을 위하여 시그니쳐 파일 기법을 이용하여 궤적을 검색한다. 마지막으로, 본 논문에서 제안하는 시공간 유사 궤적 검색 알고리즘을 구현하고, 성능 분석을 통해 제안하는 알고리즘의 효율성을 입증한다.
Many processes in the industrial realm exhibit sstochastic and nonlinear behavior. Consequently, an intelligent system must be able to nonlinear production processes as well as probabilistic phenomena. In order for a knowledge based system to control a manufacturing processes as well as probabilistic phenomena. In order for a knowledge based system to control manufacturing process, an important capability is that of prediction : forecasting the future trajectory of a process as well as the consequences of the control action. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes, includinb chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process in the presence of various patterns of noise.
최근 국제적인 테러 위협이 불특정 다수를 대상으로 발생하고 있으며, 이러한 위협에서 시민을 보호하기 위한 다양한 대책이 논의 중이다. 저렴해진 센서 기술을 활용한 사전 감시 시스템에 대한 요구가 높아지고 있으나, 보행 궤적의 고유 특성 검출 및 상세 분석 연구가 미비한 실정이다. 본 연구에서는 상용화된 보행 동선 솔루션을 활용하여, 삼성역 개찰구에서 코엑스와 직접 연결되는 연결 통로 (3-6번 출구 근처) 일대의 보행 동선 궤적 조사를 수행하였다. 조사된 궤적 자료를 바탕으로, 궤적 자료의 정규화 기법, Clustering 방법을 중심으로 보행 궤적을 유형화하고 배회 동선을 추출하는 분석 방법론을 제시하였다. 분석 결과, 동일 군집내에서 유사성이 크게 떨어지는 보행 궤적의 검출 가능성을 검증하였다.
대표적인 종단자료 분석방법인 잠재성장모형(Latent Growth Modeling)은 무조건적 모형과 조건적 모형으로 구분한다. 잠재성장모형의 무조건적 모형 성장궤적은 선형으로 가정하여 분석하는 경우가 많다. 본 연구는 선형 성장궤적으로 가정하여 모형 적합도가 미달하는 경우 연관규칙기법을 이용하여 모형 적합도를 제고하는 방법론을 제안한다. 방법론은 연관규칙 마이닝의 순차패턴(Sequential Pattern)을 사용한다. 이를 위하여 종단자료를 분위별로 나누고, 각 분위에 속한 종단자료의 기간 변화를 산출한 뒤 이를 순차 패턴 화하였다. SPSS AMOS를 이용하여 한국고용정보원의 2001년부터 6년간 조사한 청년 패널 자료로 효과성을 검증하였다. 기존 단순선형함수를 가정할 때와 비교하여 모형 적합도가 상승하는 것을 확인할 수 있었다.
Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
Geomechanics and Engineering
/
제37권1호
/
pp.73-84
/
2024
Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.
본 논문에서는 모바일 기기 사용자들의 다음 방문 장소를 효율적으로 예측할 수 있는 맵리듀스 기반의 이동 패턴 마이닝 시스템을 소개한다. 이 시스템은 대용량의 사용자 이동 궤적 데이터 집합으로부터 은닉 마코프 모델로 표현되는 각 사용자의 이동 패턴을 학습해내고, 이 모델을 현재 이동 궤적에 적용함으로써 다음 방문 장소를 예측한다. 본 시스템은 사용자별 이동 패턴 모델을 학습하는 후단부와 실시간으로 다음 방문 장소를 예측하는 전단부 등 크게 두 부분으로 구성된다. 이 중에서 후단부는 주요 장소 추출, 이동 궤적 변환, 이동 패턴 모델 학습 등 총 3개의 맵리듀스 작업 모듈들로 구성된다. 이에 반해, 본 시스템의 전단부는 이동 경로 후보군 생성, 다음 장소 예측 등 총 2개의 작업 모듈들로 구성된다. 그리고 본 시스템을 구성하는 각 작업 모듈의 맵과 리듀스 함수들은 하둡 인프라를 효과적으로 활용하여 병렬 처리를 극대화할 수 있도록 설계하였다. 대용량의 공개 벤치마크 데이터 집합인 GeoLife를 이용하여 본 논문에서 소개한 시스템의 성능을 분석하기 위한 실험들을 수행하였고, 실험 결과를 통해 본 시스템의 높은 성능을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.