• Title/Summary/Keyword: training wall

Search Result 100, Processing Time 0.028 seconds

Optimizing Language Models through Dataset-Specific Post-Training: A Focus on Financial Sentiment Analysis (데이터 세트별 Post-Training을 통한 언어 모델 최적화 연구: 금융 감성 분석을 중심으로)

  • Hui Do Jung;Jae Heon Kim;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2024
  • This research investigates training methods for large language models to accurately identify sentiments and comprehend information about increasing and decreasing fluctuations in the financial domain. The main goal is to identify suitable datasets that enable these models to effectively understand expressions related to financial increases and decreases. For this purpose, we selected sentences from Wall Street Journal that included relevant financial terms and sentences generated by GPT-3.5-turbo-1106 for post-training. We assessed the impact of these datasets on language model performance using Financial PhraseBank, a benchmark dataset for financial sentiment analysis. Our findings demonstrate that post-training FinBERT, a model specialized in finance, outperformed the similarly post-trained BERT, a general domain model. Moreover, post-training with actual financial news proved to be more effective than using generated sentences, though in scenarios requiring higher generalization, models trained on generated sentences performed better. This suggests that aligning the model's domain with the domain of the area intended for improvement and choosing the right dataset are crucial for enhancing a language model's understanding and sentiment prediction accuracy. These results offer a methodology for optimizing language model performance in financial sentiment analysis tasks and suggest future research directions for more nuanced language understanding and sentiment analysis in finance. This research provides valuable insights not only for the financial sector but also for language model training across various domains.

Optic foramen location on computed tomography

  • Vuong Duc Nguyen;Minh Tran Quang Le;Chuong Dinh Nguyen;Tho Thi Kieu Nguyen
    • Archives of Craniofacial Surgery
    • /
    • v.24 no.4
    • /
    • pp.174-178
    • /
    • 2023
  • Background: This study aimed to identify the location of the optic foramen in relation to the anterior sphenoid sinus wall, which is essential information for surgeons in planning and performing endoscopic transnasal surgery. Methods: Computed tomography scans of 200 orbits from 100 adult patients with no abnormalities were examined. The results included the location of the optic foramen in relation to the anterior sphenoid sinus wall and the distance between them, as well as the distance from the optic foramen and the anterior sphenoid sinus wall to the carotid prominence in the posterior sphenoid sinus. Results: The optic foramen was anterior to the anterior sphenoid sinus wall in 48.5% of orbits, and posterior in the remaining 51.5%. The mean distance from the optic foramen to the anterior sphenoid sinus wall was 3.82±1.25 mm. The mean distances from the optic foramen and the anterior sphenoid sinus wall to the carotid prominence were 7.67±1.73 and 7.95±2.53 mm, respectively. Conclusion: The optic foramen was anterior to the anterior wall of the sphenoid sinus in approximately half of the orbits examined in this study, and posterior in the remaining half. The mean distance from the optic foramen to the anterior sphenoid sinus wall of the sphenoid sinus was 3.82±1.25 mm.

Mechanical model for seismic response assessment of lightly reinforced concrete walls

  • Brunesi, E.;Nascimbene, R.;Pavese, A.
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.461-481
    • /
    • 2016
  • The research described in this paper investigates the seismic behaviour of lightly reinforced concrete (RC) bearing sandwich panels, heavily conditioned by shear deformation. A numerical model has been prepared, within an open source finite element (FE) platform, to simulate the experimental response of this emerging structural system, whose squat-type geometry affects performance and failure mode. Calibration of this equivalent mechanical model, consisting of a group of regularly spaced vertical elements in combination with a layer of nonlinear springs, which represent the cyclic behaviour of concrete and steel, has been conducted by means of a series of pseudo-static cyclic tests performed on single full-scale prototypes with or without openings. Both cantilevered and fixed-end shear walls have been analyzed. After validation, this numerical procedure, including cyclic-related mechanisms, such as buckling and subsequent slippage of reinforcing re-bars, as well as concrete crushing at the base of the wall, has been used to assess the capacity of two- and three-dimensional low- to mid-rise box-type buildings and, hence, to estimate their strength reduction factors, on the basis of conventional pushover analyses.

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

SEM Observations on the Perithecia of Phyllactinia corylea Causing Powdery Mildew Disease in Mulberry

  • Kumar, Vineet;Dhar, Anil;Gupta, V.P.;Babu, A.M.;Sarkar, A.;Datta, R.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • Surface morphology of perithecia of the powdery mildew fungus of mulberry, Phyllactinia corylea is described under scanning electron microscope. The perithecia have penicellate cells on the upper surface and at an average 17 acicular appendages towards the lower surface each emerging from a bulbous base. Many perithecial walls towards the base have shrunken walls. When the perithecia dry out they are pushed above the leaf surface by the acicular append-ages which then bend at the base. The bending of the appendages may be attributed to the shrinkage of lower wall cells due to loss of water.

  • PDF

Effects of Gastrocnemius Neuromuscular Electrical Stimulation Training on Ankle mobility and Gait in Patients with Stroke

  • Yusik Choi;Hyunjoon Cho;Sooyong Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.300-309
    • /
    • 2023
  • Objective: The purpose of this study was to investigate the effects of gastrocnemius neuromuscular electrical stimulation training on ankle mobility and gait in patients with stroke. Design: A randomized controlled trial. Methods: 31 patients with stroke were selected and classified into an experimental group (n=16) and a control group (n=15). Both groups were assessed for ankle mobility using the Knee to Wall Test and gait parameters using G-walk before and after the intervention. The intervention was applied five times a week for four weeks. The experimental group performed gastrocnemius neuromuscular electrical stimulation followed by ankle control exercises, while the control group only applied NMES to the tibialis anterior muscle of the paretic side for 30 min per session five times a week for 4 weeks. Results: Experimental group showed significant improvements in Knee to wall test. and lumbar flexibility after the intervention. both group showed significant improvements in gait parameters after the intervention. However, when comparing between the two groups, the experimental group showed a more significant effect than the control group. Conclusions: Gastrocnemius neuromuscular electrical stimulation training can be considered an effective approach to improve ankle mobility and gait ability in patients with stroke.

Collapse moment estimation for wall-thinned pipe bends and elbows using deep fuzzy neural networks

  • Yun, So Hun;Koo, Young Do;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2678-2685
    • /
    • 2020
  • The pipe bends and elbows in nuclear power plants (NPPs) are vulnerable to degradation mechanisms and can cause wall-thinning defects. As it is difficult to detect both the defects generated inside the wall-thinned pipes and the preliminary signs, the wall-thinning defects should be accurately estimated to maintain the integrity of NPPs. This paper proposes a deep fuzzy neural network (DFNN) method and estimates the collapse moment of wall-thinned pipe bends and elbows. The proposed model has a simplified structure in which the fuzzy neural network module is repeatedly connected, and it is optimized using the least squares method and genetic algorithm. Numerical data obtained through simulations on the pipe bends and elbows with extrados, intrados, and crown defects were applied to the DFNN model to estimate the collapse moment. The acquired databases were divided into training, optimization, and test datasets and used to train and verify the estimation model. Consequently, the relative root mean square (RMS) errors of the estimated collapse moment at all the defect locations were within 0.25% for the test data. Such a low RMS error indicates that the DFNN model is accurate in estimating the collapse moment for wall-thinned pipe bends and elbows.

Field Survey on Construction and Utilization of Home Network - Focusing on Pangyo New Town - (홈네트워크 구축현황 및 이용실태 조사연구 - 판교신도시를 중심으로 -)

  • Yim, Mi-Sook
    • Journal of the Korean housing association
    • /
    • v.27 no.5
    • /
    • pp.25-35
    • /
    • 2016
  • he objective of this study was to investigate home network systems presently applied in multi-housing complexes and resident's usage to improve the utilization of these systems and services as well as maintenance methods. Subjects were 27 housing complexes equipped with home network systems in west Pangyo area. The investigation methods of communal network systems were observed and photographed. Unit systems were investigated through photography, interviews, and observation focusing on the utilization of Wall-Pads by visiting one unit of each housing complex. The results are as follows: (1) Most housing complexes that we investigated were built with high-grade IT infrastructure. Also, remote meter reading, electronic security, vehicle access, and building access systems were established. Wall-Pads with similar functions were installed in 23 housing complexes, excluding private rental housing complexes. (2) Even though people were well aware of the need for common systems within their housing complexes, only 10~20% of Wall-Pad menus were used. (3) Low utilization rates of home network stem from Wall-Pad menus which were user-unfriendly, and a lack of user training for the complex's common system and unit system. Therefore, to promote active use of home network systems, the systems must be diversified in accordance with user characteristics. In addition, the Wall-Pad menus should be reorganized to be user-friendly.

Integrity Evaluation Model for a Straight Pipe with Local Wall Thinning Defect (직관 배관의 국부 감육결함에 대한 건전성 평가 모델)

  • Park Chi Yong;Kim Jin Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.734-742
    • /
    • 2005
  • The present study proposes the integrity evaluation model for a straight pipe with local wall thinning defect, which reflects the characteristics of training shape and loading condition in the Piping of nuclear power plant. For this purpose, a series of finite element analyses are performed under various defect geometries and loading conditions, and real pipe experiment data performed previously is employed. The model includes the effect of thinning length as well as thinning depth and width, and also it considers the combined loading effect between internal pressure and bending moment. The proposed model has been validated using the results of finite element analysis and pipe experiment data. The results indicate that the proposed model provides more reliable predictions of pipe failure than the current existing model, in terms of accuracy, consistency, and conservativeness of results.