• 제목/요약/키워드: training transfer

검색결과 472건 처리시간 0.023초

학원의 에듀테크특성과 유·무형적서비스가 학부모의 재수강의도에 미치는 영향: 라포형성행동의 조절효과 (The Impact of Edu-Tech and Tangible and Intangible Services of Private Institutes on parents' Intention for Re-Enrollment: The Moderating Effect of Rapport-Building Behavior)

  • 전지연;하태관
    • 벤처창업연구
    • /
    • 제19권4호
    • /
    • pp.127-139
    • /
    • 2024
  • 본 연구는 에듀테크특성과 유·무형의 교육서비스가 학원의 경영성과와 직접적 관련이 있는 재수강의도에 미치는 영향에 관한 연구이다. 연구 결과를 근거로 학원의 재수강의도와 경영성과 향상 방안 제시를 목적으로 연구하였다. 사교육은 공교육의 한계를 보완하며 지속적으로 성장하며, 학부모의 의존도를 높여가고 있다. 본 연구는 정보통신기술의 발달과 함께 교육현장에서 활용도를 높여가고 있는 에듀테크특성과 무형적서비스 및 유형적서비스 요인들이 재수강의도에 영향을 미칠 것이라는 가설과 각 요인들이 재수강의도에 영향을 미치는데 있어 학부모와의 라포형성행동이 조절효과가 있을 것이라는 가설을 검증하였다. 가설 검증결과, 에듀테크특성 중 콘텐츠와 무형적서비스인 신뢰성과 공감성 그리고 유형적서비스인 유형성과 지불접근성이 재수강의도에 긍정적인 영향을 주는 것으로 나타났다. 학원의 교육서비스와 재수강의도 사이에서 라포형성행동이 조절효과를 나타낼 것이라는 가설은 무형적서비스의 공감성과 유형적서비스의 유형성 두 가지 요인이 채택되었다. 가설 검증 결과를 바탕으로 본 연구에서는 학원의 경영성과 향상을 위한 세 가지 방안을 제시하였다. 첫째, 에듀테크특성의 개선과 관리 차원에서 에듀테크의 도입 및 콘텐츠의 최신화와 운영의 안정성 확보를 제안하였다. 둘째, 무형적서비스의 개선과 관리 차원에서 강사의 자질과 역량 향상을 위한 채용관리와 공신력 있는 기관을 통한 지속적 교육으로 전문성 유지 그리고 교육 프로그램의 질적 수준 향상을 바탕으로 한 학생 수준별 교육을 제안하였다. 셋째, 유형적서비스의 개선과 관리 차원에서 적절한 수강료 책정과 온라인, 모바일, 카드, 계좌이체 등 장소와 시간에 구애함 없는 다양한 수강료 납부 방법의 마련과 학습에 집중할 수 있는 인테리어와 편의시설 구비를 제안하였다. 또한 라포형성행동의 조절효과를 고려하여 유형성의 개선과 관리에 있어 비용을 수반하는 개선이나 관리도 필요하지만 라포형성을 통해 유형성의 수준이 높다고 느끼게 하는 것도 중요함을 주장하였다. 또한 정보통신기술 기반의 에듀테크의 중요성이 증가하고 있는 만큼 LLM 기반의 AI기술, AR·VR을 적용한 메타버스 환경구축 등 혁신적 기술을 도입하고자 하는 벤처정신을 갖춘 학원에 대한 정부의 기술지원, 벤처인증제도 지원과 같은 다양한 지원책이 필요하다. 본 연구가 교육현장에서 개선하고 관리하여야 할 항목과 방법을 구체적으로 제시함으로써 학원의 경영성과 개선에 도움이 될 것이라 기대한다.

  • PDF

키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법 (A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model)

  • 조원진;노상규;윤지영;박진수
    • Asia pacific journal of information systems
    • /
    • 제21권1호
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.