Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.234-236
/
2020
Content-adaptive training and transmission of the model parameters of neural networks can boost up the SR performance with higher restoration fidelity. In this case, efficient transmission of neural network parameters are essentially needed. Thus, we propose a novel method of compressing the network model parameters based on the training of network model parameters in the sense that the residues of filter parameters and content loss are jointly minimized. So, the residues of filter parameters are only transmitted to receiver sides for different temporal portions of video under consideration. This is advantage for image restoration applications with receivers (user terminals) of low complexity. In this case, the user terminals are assumed to have a limited computation and storage resource.
Journal of the Korean Institute of Telematics and Electronics B
/
v.31B
no.4
/
pp.145-154
/
1994
This paper proposes an efficient method for improving the training performance of the neural network by using a hybrid of a stochastic approximation and a backpropagation algorithm. The proposed method improves the performance of the training by appliying a global optimization method which is a hybrid of a stochastic approximation and a backpropagation algorithm. The approximate initial point for a stochastic approximation and a backpropagation algorihtm. The approximate initial point for fast global optimization is estimated first by applying the stochastic approximation, and then the backpropagation algorithm, which is the fast gradient descent method, is applied for a high speed global optimization. And further speed-up of training is made possible by adjusting the training parameters of each of the output and the hidden layer adaptively to the standard deviation of the neuron output of each layer. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to that of the backpropagation, the Baba's MROM, and the Sun's method with randomized initial point settings. The results of adaptive adjusting of the training parameters show that the proposed method further improves the convergence speed about 20% in training.
Purpose: The purpose of this study was to compare the strength and walking ability of chronic stroke patients following either proprioceptive neuromuscular facilitation (PNF) pattern training with pressure biofeedback units (feedback group) or PNF pattern training without pressure biofeedback units (control group). Methods: Eighteen participants with chronic stroke were recruited from a rehabilitation hospital. They were divided into two groups: a feedback group (n = 8) and a control group (n = 10). They all received 30 minutes of neurodevelopmental therapy and PNF training for 15 minutes five times a week for three weeks. Muscle strength and spatiotemporal gait parameters were measured. Muscle strength was measured by hand-held dynamometer; gait parameters were measured by the Biodex Gait trainer treadmill system. Results: After the training periods, the feedback group showed a significant improvement in hip abductor muscle strength, hip extensor muscle strength, step length of the unaffected limb, and step time of the affected limb (p<0.05). Conclusion: The results of this study showed that proprioceptive neuromuscular facilitation pattern training with pressure biofeedback units was more effective in improving hip muscle strength and walking ability than the proprioceptive neuromuscular facilitation pattern training without pressure biofeedback units. Therefore, to strengthen hip muscles and improve the walking ability of stroke patients, using pressure biofeedback units to improve trunk stability should be considered.
This paper describes some implementation schemes of CNN in view of mini-batch DNN training for efficient second order optimization. This uses same procedure updating parameters of DNN to train parameters of CNN by simply arranging an input image as a sequence of local patches, which is actually equivalent with mini-batch DNN training. Through this conversion, second order optimization providing higher performance can be simply conducted to train the parameters of CNN. In both results of image recognition on MNIST DB and syllable automatic speech recognition, our proposed scheme for CNN implementation shows better performance than one based on DNN.
Gazel, Eymen;Tastemur, Sedat;Acikgoz, Onur;Yigman, Metin;Olcucuoglu, Erkan;Camtosun, Ahmet;Ceylan, Cavit;Ates, Can
Asian Pacific Journal of Cancer Prevention
/
v.16
no.5
/
pp.1813-1816
/
2015
Background: The aim of this study was to research the importance of the neutrophil to lymphocyte ratio (NLR) in prediction of PSA recurrence after radical prostatectomy, which has not been reported so far. Materials and Methods: The data of 175 patients who were diagnosed with localised prostate cancer and underwent retropubic radical prostatectomy was retrospectively examined. Patient pre-operative hemogram parameters of neutrophil count, lymphocyte count and NLR were assessed. The patients whose PSAs were too low to measure after radical prostatectomy in their follow-ups, and then had PSAs of 0,2 ng/mL were considered as patients with PSA recurrence. Patients with recurrence made up Group A and patients without recurrence made up Group B. Results: In terms of the power of NLR value in distinguishing recurrence, the area under OCC was statistically significant (p<0.001) .The value of 2.494 for NLR was found to be a cut-off value which can be used in order to distinguish recurrence according to Youden index. According to this, patients with a higher NLR value than 2.494 had higher rates of PSA recurrence with 89.7% sensitivity and 92.6% specificity. Conclusions: There are certain parameters used in order to predict recurrence with today's literature data.We think that because NLR is easy to use in clinics and inexpensive, and also has high sensitivity and specificity values, it has the potential to be one of the parameters used in order to predict biochemical recurrence in future.
Purpose: To study the diagnostic accuracies of serum human epididymis protein 4 (HE-4) levels, virtual organ computer-aided analysis (VOCAL) parameters and endometrial volume in endometrial cancer cases. Materials and Methods: One hundred and seven patients (37 with endometrial cancer and 70 with benign endometrial pathology) were included in this study. VOCAL parameters and serum HE-4 levels were compared between the groups. Results: Area under the curve (AUC) values were 0.702, 0.658, 0.706 for vascularization index (VI), the flow index (FI) and the vascularization flow index (VFI), respectively. A cut off value of 0.568 for VI demonstrated 70% sensitivity, 72% specificity, 56% positive predictive value (PPV) and a81% negative predictive value (NPV). A cut off value of 25.8 for showed a senitivith of 70% and a specificity of 58% with aPPV of 46% and NPV of 78%, and with a cut off value of 0.12 for VFI 70%, 69%, 54% and 81%, respectively. The area under the curve for HE-4 was 0.814. A cut off value of 458 pmol/L was predictive of malignancy with 86% sensitivity and 63% specificity. Conclusions: VOCAL parameters and serum HE-4 levels were statistically significantly higher in the endometrial cancer patients. Serum HE-4 levels provided a greater sensitivity compared to power doppler angiography for predicting malignancy or benign endometrial pathology.
International Journal of Industrial Entomology and Biomaterials
/
v.26
no.2
/
pp.67-73
/
2013
Antheraea mylitta Drury is basically a crossbreeding species, as such it seems to be potentially a good material for the exploitation of heterosis. In the present study F1 hybrid of wild ecorace Laria (L) and semi-domestic Daba (D) was raised and evaluated for various quantitative traits and biochemical parameters during larval stage. Improved fecundity ($+18{\pm}1.8%$ and higher egg hatching rate ($+10.96{\pm}1.3%$) was recorded in the F1hybrid ($L{\times}D$). Biochemical parameters studied in the hemolymph, midgut and fatbody of the larva showed significantly higher (P<0.05) total proteins and carbohydrate concentration besides digestive enzyme activity. Correspondingly SDS-PAGE revealed more number of protein bands in the hemolymph sample of F1s, ranging between 29 kDa to 66 kDa compared to parental lines. The present study demonstrates the positive heterosis effect in the F1 hybrid of Laria ${\times}$ Daba. Biochemical analysis indicates that, there is possibilities of exploitation of hybrids with specific parents targeted for desirable commercial traits (silk yield and fecundity). Moreover, most of these biochemical parameters can be used as markers to analyze the genetic improvement in the tasar silkworms.
This study proposes an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. In the proposed method, the image is segmented using a spatial region growing based on hierarchical clustering, and fuzzy training is then employed to find the sample classes that well represent the ground truth. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes. The experimental results show that the new scheme proposed in this study could be used to select the regions with different characteristics existed on the scene of observed image as an alternative of field survey that is so expensive.
Proceedings of the Korean Society for Technology of Plasticity Conference
/
1999.03b
/
pp.84-87
/
1999
This paper presents a preform design method that combines the analytic method and inference of known knowledge with neural network. The analytic method is a finite element method that is used to simulate backward extrusion with pre-defined process parameters. The multi-layer network and back-propagation algorithm are utilized to learn the training examples from the simulation results. The design procedures are utilized to learn the training examples from the simulation results. The design procedures are two methods the first the neural network infer the deformed shape from the pre-defined processes parameters. The other the network infer the processes parameters from deformed shape. Especially the latest method is very useful to design the preform From the desired feature it is possible to determine the processes parameters such as friction stroke and tooling geometry. The proposed method is useful for shop floor to decide the processes parameters and preform shapes for producing sound product.
Purpose: Gait and cognitive impairment in stroke patients exacerbate fall risk and mobility difficulties during multi-task walking. Virtual reality can provide interesting and challenging training in a community setting. This study evaluated the effect of community-based virtual reality gait training (VRGT) using a 360-degree image on the gait ability of chronic stroke patients. Methods: Forty-five chronic stroke patients who were admitted to a rehabilitation hospital participated in this study. Patients meeting the selection criteria were randomly divided into a VRGT group (n=23) and a control group (n=22). Both these groups received general rehabilitation. The VRGT group was evaluated using a 360-degree image that was recorded for 50 minutes a day, 5 days per week for a total of 6 weeks after their training. The control group received general treadmill training for the same amount of time as that of the VRGT group. The improvement in the spatiotemporal parameters of gait was evaluated using a gait analyzer system before and after training. Results: The spatiotemporal gait parameters showed significant improvements in both groups compare with the baseline measurements (p<0.05), and the VRGT group showed more improvement than the control group (p<0.05). Conclusion: Community-based VRGT has been shown to improve the walking ability of chronic stroke patients and is expected to be used in rehabilitation of stroke patients in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.