• Title/Summary/Keyword: training daea

Search Result 1, Processing Time 0.016 seconds

The Flood Water Stage Prediction based on Neural Networks Method in Stream Gauge Station (하천수위표지점에서 신경망기법을 이용한 홍수위의 예측)

  • Kim, Seong-Won;Salas, Jose-D.
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.247-262
    • /
    • 2000
  • In this paper, the WSANN(Water Stage Analysis with Neural Network) model was presented so as to predict flood water stage at Jindong which has been the major stream gauging station in Nakdong river basin. The WSANN model used the improved backpropagation training algorithm which was complemented by the momentum method, improvement of initial condition and adaptive-learning rate and the data which were used for this study were classified into training and testing data sets. An empirical equation was derived to determine optimal hidden layer node between the hidden layer node and threshold iteration number. And, the calibration of the WSANN model was performed by the four training data sets. As a result of calibration, the WSANN22 and WSANN32 model were selected for the optimal models which would be used for model verification. The model verification was carried out so as to evaluate model fitness with the two-untrained testing data sets. And, flood water stages were reasonably predicted through the results of statistical analysis. As results of this study, further research activities are needed for the construction of a real-time warning of the impending flood and for the control of flood water stage with neural network method in river basin. basin.

  • PDF