• Title/Summary/Keyword: trail erosion

Search Result 23, Processing Time 0.02 seconds

Status of Damage and Restoration Planning of Forest Trail in Choansan(Mt.) Neighborhood Park, Seoul, South Korea (초안산근린공원 숲길 훼손 실태 및 복원방안 연구)

  • Han, Bong-Ho;Ki, Kyong-Seok;Noh, Tai-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.923-933
    • /
    • 2012
  • The purpose of this study targeting Choansan(Mt.) Neighborhood Park in Seoul of South Korea, whose level of visitation and use pressure has been recently increasingly high, was to understand distribution and damage status of forest trail and accordingly, set up direction of how to improve forest trail in urban area. With regards to current damage on forest trail in Choansan(Mt.) Neighborhood Park, the damaged trail with road width of over 2m and with erosion depth of over 30cm amounted to 20.3% and 36.3% respectively. And the trail section with bare land erosion, root exposure or rock exposure and the section whose impact rating class exceeded IV occupied 47.0% and 70.6%, indicating the forest trail was severely damaged. The severely injured trail route mainly included the main forest trail formed along the main ridge, the byroad connected to the main forest trail and the steep forest trail in low-lying area. Based on the study results, five types of restoration of forest trail in Choansan(Mt.) Neighborhood Park were offered, including prevention of forest trail extension, stabilization of forest trail base, maintenance of forest trail surface, vegetation restoration after closing forest trail and maintenance. Ecological restoration was additionally offered. The prevention of forest trail extension was planned to prevent expanded width of forest trail where bare land was exposed. The stabilization of forest trail base was planned to prevent erosion in the forest trail and exposure of roots. The maintenance of forest trail surface was planned in a way to protect the severely damaged forest trail surface by using wood deck and wood stairs and surfacing the road.

Physical Characteristics of Ridge Traversing Trail in Mount Jiri National Park (지리산 국립공원 종주 등산로의 물리적 특성)

  • Kim, Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.4
    • /
    • pp.425-441
    • /
    • 2011
  • Ridge traversing trail in Mount Jiri National Park is classified as flat, gully-like, unilateral, and asymmetric bilateral, paths based on a location and gradient of paths. These types are interchangeable due to a drainage condition of trail surfaces. Using a rapid survey, the trail is 135.9 cm wide, 23.6 cm deep and $5.1^{\circ}$ in a gradient, respectively. All treads have been compacted due to human trampling. The path width is affected by a slope aspect and a distribution of Sasa borealis. An asymmetric path is wider than a symmetric path. A soil erosion rate is equivalent to $68.9cm^2/year$ for the period from 1960 to 2009, suggesting that the trail has been widened 2.7 cm/year and the tread lowered 0.4 cm/year. Trampling and needle ice action combined with rainwash induced by a pipeflow are dominant erosion processes contributing to the trail expansion.

Study on Environmental Deteriorations of Trail and Use Impacts in Moaksan Provincial Park (모악산도립공원 등산로의 환경훼손 실태 및 이용영향에 관한 조사연구)

  • 김세천;박종민
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.4
    • /
    • pp.39-50
    • /
    • 1998
  • The object of this study was to examine and analyze the environmental deterioration of three major trails and around peak area of Moaksan Provincial park in 1996. Trails are mostly made up at ridgeline and the slope of them is gentle. Mean trail width is 3.6m, and total length of branch trails is 982m in survey area. The environmental deterioration is derived from trail extension. Maximum eroded depth and cross-section area loss are 89cm and 14,050cm2 respectively, and gully erosion type appears at many sites. The environmental deterioration of trails is very heavy at the sections from Khui to Moaksan peak and from Moakchong to ascent part around the peak. The entire width, branch trail, maximum depth, cross-sectional area loss and surface roughness, as the indexes of trail conditions, are significantly greater at the more heavily used trails. Amount of erosion is influenced by eroded depth, longitudinal slope, runoff influence and entire width in descending order as well as the amount of use. Safety and protection facilities on the trail such as stone and soil stairs, rope handrail, stone channel and soil ditch work are built, but they are very deficient. Bared lands about 4,900m2 and fill slopes are caused and formed by recreation activities and constructions around peak area. It is required to carry the recess system and to conserve and rehabilitate the destroyed trail sites and bare fill slopes as soon as possible, before the environmental deterioration becomes critical because of increased used amount in consequence of construction of recreation parks.

  • PDF

Cross-sectional Changes of Ridge Traversing Trail in Jirisan National Park (지리산국립공원 종주등산로의 횡단면 변화 - 노고단~삼도봉 구간을 중심으로 -)

  • Kim, Taeho;Lee, Seungwook
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.2
    • /
    • pp.234-245
    • /
    • 2013
  • In order to examine the amount and rate of soil erosion on Ridge Traversing Trail in Jirisan National Park, a cross-sectional area of hiking trail were monitored at 16 sites in Nogodan - Samdobong section from November 2011 to April 2012. Although all sites demonstrates an enlarged cross-section of trail, the amount of soil erosion varies from site to site: 54.9 to $908.8cm^2$. It suggests that the erosional rate ranges from $0.1cm^2/day$ to $1.72cm^2/day$. The erosional amount is also varied with a trail type: $109.3cm^2$ for a shallow gully-like trail to $573.2cm^2$ for a unilateral trail. However, the cross-sectional change is larger on a sidewall than a tread irrespective of a trail type. The erosional amounts of November to April are smaller than that of May to October. In particular, the erosional amount of November 2011 to April 2012 is smaller than the depositional amount, implying a reduced cross-section of trail. Pipkrake action puts loose soil particles on a sidewall on March and April, and then rainwash due to a heavy rainfall takes them away after May. It seems to be the most predominant erosional process in Ridge Traversing Trail. A sidewall facing north shows a larger amount of erosion than a sidewall facing south. It also implies a difference in the development of a pipkrake according to an aspect. The small amount of erosion and cross-sectional decrease, which is usually observed on April, results from the combined effect of frost heaving, pipkrake action, a small rainfall and a temporary suspension of trampling. It is necessary to establish the monitoring system of trail erosion in terms of the management of hiking trail in a mountain national park.

  • PDF

Assessment of Impact Rating Class and Deterioration Type on the Trails in Mt. Namsan District, Gyeongju National Park (경주국립공원 남산 지구의 탐방로 훼손 유형 및 환경피해도 평가)

  • Heo, Sang-Hyun;You, Ju-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1431-1442
    • /
    • 2015
  • This study was carried out to systematically maintain and manage the trails by assessing the physical characteristics, the types of deterioration and impact rating class of trails located in Mt. Nam District of the Gyeongju National Park. The major trails followed 6 routes including Sambulsa-Geumobong(A), Yongjangsaji-Geumobong(B), Yongjanggol-Yiyoungjae-Gowibong(C), Cheonusa-Gowibong(D), Sangseojang-Forest road(E) and Tongiljeon-Forest road(F). The routes length of A was 2.2 km, 2.7 km of B, 3.4 km of C, 1.3 km of D, 2.0 km of E and 1.0 km of F. In the physical characteristics, A was the widest and F was the narrowest in the width and bared width of trail. In depth of erosion, B was the deepest and E was the shallowest. D was the steepest and E was the gentlest in the slope. In the results of analysing the types of deterioration, A were 13 types, 11 types of B, C and D, 10 types of E and 6 types of F. The times of appearance of deterioration types in A were 86 times, 75 times of B, 105 times of C, 48 times of D, 47 times of E and 13 times of F. In case of the impact rating class, trail erosion was II degree, I degree of trail expansion, root exposure, trail divergence and rock exposure.

A Study on the Deterioration Status of the Seonjaryeong Forest Trails in the Baekdudaegan Ridge (백두대간 마루금 선자령순환등산로의 숲길훼손실태 연구)

  • Lee, Sugwang;Lee, Jinkyu;Kim, Myeongjun;Bang, Hongseok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.91-105
    • /
    • 2021
  • We conducted a study to identify the relationships between the investigated factors and provide a methodology and generate data by applying deterioration classes to the Seonjaryeong Forest Trail (4.3 km) in the Baekdudaegan Ridge. The average trail width (1.7 m) and bare width (1.4 m) were wider than those obtained in the previous studies. The frequency of trail deterioration was also high. Specific data on deterioration classes were obtained and evaluated using qualitative criteria. Specific data for heavy class stands at 20.1% in trail grade, 13.3 cm on average, and 16.1 cm in the center of erosion depth, 16.2 cm of CSA, 12.3 kg/cm (20.1 mm) on average and maximum 39.3 kg/cm (29.6 mm) of soil hardness. We observed a positive correlation between the deterioration class and trail grade, and the average and maximum soil erosion depths of the hill side were deeper than those of the ridge. The soil hardness data showed a statistically significant difference in terms of the transect site and calculation method (㎏/㎠, mm). Therefore, trail deterioration was observed at the sites having ≥20% trail grade; thus, continuous monitoring at fixed sites over time will be required for sustainability. Furthermore, the trail grade should be of the utmost priority in trail design and management.

Damage Status of the Urban Forest Trails in Jinju, Gyeongsangnam-do (진주시 도시생활권 등산로 훼손실태에 관한 연구)

  • Kang, Min-Jeng;Park, Jae-Hyeon;Kim, Ki-Dae
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.315-320
    • /
    • 2016
  • This study was carried out to establish a management plan for urban forest trails with analysis of trail damage types and soil physicochemical properties on 3 urban forest parks in Jinju, Gyeongnam-do. We found that soil hardness was significantly higher in forest trails than forest area at 0 cm and 5 cm at a significance level of 0.05. However, we could not find any significant differences for other soil properties. For the trail damage types, the most common types were as follows: trail expansion (66%), trail erosion (59%), side road (57%), and trail boundary erosion and root exposure (41%). The results showed no difference in most of these types between the trails and forest area, indicating that the forest area might be damaged as well as the trails. Priority should be given to prepare measures that prevent soil compaction from overcrowded hikers.

Types and Factors of Trail Degradtion in Daisetsuzan National Park, Hokkaido, Northern Japan (일본 홋카이도 다이세츠산 국립공원 등산로의 훼손 유형 및 요인)

  • KIM, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.187-195
    • /
    • 2012
  • Daisetsuzan National Park in Hokkaido, Japan, has an extensive alpine region due to the topographic feature of lava plateau, and exhibits the surface geology largely composed of pyroclastic materials. In addition, the peak season of mountain climbing in the park coincides with a snow-melting period, resulting in severe soil erosion along hiking trails generated by human trampling, snow-melting water and pipkrake. Trail section has been particularly enlarged because the snow-melting water scours a trail surface and the pipkrake erodes sidewalls of a trapezoid-shaped trail. The scoured tread also forces hikers to walk out of a trail, and then frequently brings about path divergence as well as path widening. The soil particles, which are produced by erosional processes in a slope reach, flow downward, and cause the secondary trail degradation by covering a tread in a flat reach and nearby grassland.

Mountaineering Trail Deterioration and Vegetation in the Mt. Sorak National Park (설악산 국립공원 등반로의 훼손상태와 주변식생에 관한 연구)

  • 박봉우;이기선;윤영활;박완근
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.17 no.1
    • /
    • pp.69-79
    • /
    • 1989
  • ^x Mt. Sorak national park trails are receiving high levels of use that is affecting user satisfaction and resource management. Trampling impacts studies were conduced in 2 courses to measure soil loss, extent of trail width, and vegetation change. Trail erosion were quantified using a cross -sectional area and most Portions were eroded severely in Oe - Sorak course especially. Phytosociological changes were also surveyed on trail - sides and controls by quadrat to confirm that trampling had an effect on the composition of the vegetation. Information from this study could be used directly in the planning, construction of new trails, and the maintenance of existing trails.

  • PDF

Analysis of Physical Characteristics and Deterioration Type of Trail in National Parks (국립공원 탐방로의 물리적 특성 및 훼손유형 분석 - 6개 국립공원을 대상으로 -)

  • Jeong, Won-Ok;Ma, Ho-Seop;Kang, Won-Seok
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • The purpose of this study is to analyze the trail deterioration condition and to obtain the information for the desirable maintenance and restoration of trail in national parks. The results obtained from this study were summarized as follows; The physical characteristics of trail were surveyed at the total 778 point for 204.5 km in length. As a result, the average degree of trail was $14.6^{\circ}$, average trail width was 1.5m and average bared trail width was 1.1 m. Major deterioration types of trail were trail deepen (37%), root exposed, widen, diverged, rock exposed and slope erosion in order of frequency. Deterioration class of trail were that non-deterioration was 165.34 km (80.9%), heavy class was 9.08 km, middle class was 12.69 km and light class was 17.39 km and the deterioration rate was 19.1%.