• Title/Summary/Keyword: traffic-induced vibration

Search Result 57, Processing Time 0.021 seconds

Serviceability assessment of subway induced vibration of a frame structure using FEM

  • Ling, Yuhong;Gu, Jingxin;Yang, T.Y.;Liu, Rui;Huang, Yeming
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • It is necessary to predict subway induced vibration if a new subway is to be built. To obtain the vibration response reliably, a three-dimensional (3D) FEM model, consisting of the tunnel, the soil, the subway load and the building above, is established in MIDAS GTS NX. For this study, it is a six-story frame structure built above line 3 of Guangzhou metro. The entire modeling process is described in detail, including the simplification of the carriage load and the determination of model parameters. Vibration measurements have been performed on the site of the building and the model is verified with the collected data. The predicted and measured vibration response are used together to assess vibration level due to the subway traffic in the building. The No.1 building can meet work and residence comfort requirement. This study demonstrates the applicability of the numerical train-tunnel-soil-structure model for the serviceability assessment of subway induced vibration and aims to provide practical references for engineering applications.

Study on wind-induced vibration response of Jiayuguan wooden building

  • Teng Y. Xue;Hong B. Liu;Ting Zhou;Xin C. Chen;Xiang Zhang;Zhi P. Zou
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • In this paper, the wind-induced response of Jiayuguan wooden building (world cultural heritage) in Northwest China was studied. ANSYS finite element software was used to establish four kinds of building models under different working conditions and carry out modal analysis. The simulation results were compared with the field dynamic test results, obtaining the model which reflects the real vibration characteristics of the wooden tower. Time history data of fluctuating wind speed was obtained by MATLAB programming. Time domain method and ANSYS were used to analyze the wind-induced vibration response time history of Jiayuguan wooden building, obtaining the displacement time history curve of the structure. It was suggested that the wind-induced vibration coefficient of Jiayuguan wooden building is 1.76. Through analysis of the performance of the building under equivalent static wind load, the maximum displacement occurs in the three-story wall, gold column and the whole roof area, and the maximum displacement of the building is 5.39 cm. The ratio of the maximum stress value to the allowable value of wood tensile strength is 45 %. The research results can provide reference for the wind resistant design and protection of ancient buildings with similar structure to Jiayuguan wooden tower.

Estimation of Slab Response of Plate Girder Bridge in Traffic-Induced Vibration by Three-Dimensional Analysis (삼차원 해석에 의한 강합성교 바닥판의 교통유발진동 응답 평가)

  • Kim, Chul Woo;Kawatani, Mitsuo;Lee, Woo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.263-277
    • /
    • 1998
  • Recently, it is frequently reported that fatigue damages of deck slabs and floor systems of highway bridges occur under the conditions of increasing weight and traffic of heavy vehicles. These troubles are affected by dynamic wheel load of heavy vehicles running on roadway surface roughness with bump at expansion joint. It is required that this kind of traffic-induced vibration of highway bridges must be analyzed by using three-dimensional models of bridge and vehicle. In this study, the three-dimensional dynamic analysis is carried out, and dynamic responses of deck slab and wheel loads of moving vehicle are estimated according to different vehicle speeds and bump heights. Analytical responses of bridge deck slab are compared with experimental ones which were measured at Umeda entrance bridge of Hanshin Expressway in Osaka.

  • PDF

MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge

  • Chen, Z.Q.;Wang, X.Y.;Ko, J.M.;Ni, Y.Q.;Spencer, B.F.;Yang, G.;Hu, J.H.
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.293-304
    • /
    • 2004
  • The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. Several intensive wind-rain induced vibrations had been observed since its open to traffic in 1999. To investigate the possibility of using MR damping systems to reduce cable vibration, a series of field tests were conducted. Based on the promising research results, MR damping system was installed on the longest 156 stay cables of Dongting Lake Bridge in June 2002, making it the worlds first application of MR dampers on cable-stayed bridge to suppress the wind-rain induced cable vibration. As a visible and permanent aspect of the bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes field tests and the implementation of MR damping systems for cable vibration reduction. Three-years reliable service of this system proves its durability.

A Study on the Fatigue Behavior of RC Slabs of Widened Bridges (확폭교량 RC 상판의 피로거동에 관한 연구)

  • 홍순길;장동일
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.143-150
    • /
    • 1994
  • Most widened bridges have been constructed by the joining-construction method that makes new and existmg bridges structurally a single structure. Since the joining-constructiori method has several problems in design and construction viewpoint, this study is conducted in order to investigate the flexural fatigue behavior of RC slabs, which are widened and influenced by traffic-induced vibration of existmg bridge during placing and curing of new concrete, with the prototype fatigue test. It was found that stress concentration at the jclmts anti slips between steel bar and concrete are occured. Hut, the general tx:havinrs are similar to the original state and joining-construction method using expansive concrete nut~gated the influence of the trafflc-induced vibration.

Vibration Control of Bridge for Serviceability (교량의 사용성 증가를 위한 진동제어)

  • 허준식;조지성;박선규;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.362-369
    • /
    • 2002
  • This paper mainly propose the new passive vibration control device, named BRV(the bridge reduced vibration), for reducing excessive traffic-induced vibration of bridges and for measuring performance of BRV numerical example was simulated. The purpose of BRV is mainly on reducing vertical acceleration and displacement of bridge. In BRV we can control the stiffness and damping coefficient to accept the performance we want. The result of simulation showed that the vertical acceleration and displacement was effectively diminished. It would be concluded that BRV can be used to improve the serviceability of bridge and fatigue life etc.

  • PDF

Assessment of traffic-induced low frequency sound radiated from a viaduct by field experiment

  • Kawatani, M.;Kim, C.W.;Nishitani, K.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.373-387
    • /
    • 2010
  • This study is intended to assess low frequency sound radiated from a viaduct under normal traffic. The bridge comprises steel box girders and wide cantilever decks on which vehicles pass. The low frequency sound and the acceleration response of the bridge under normal traffic are measured to investigate how bridge vibrations affect the low frequency sound observed near the bridge. Observations demonstrate that strong relationships exist between frequency characteristic of bridge's acceleration response and the sound pressure level of low frequency sound. A noteworthy point is that the dynamic feature of the sound pressure level is mostly affected by dynamic feature of the span locating near the observation point.

Assessment of environmental effects in scour monitoring of a cable-stayed bridge simply based on pier vibration measurements

  • Wu, Wen-Hwa;Chen, Chien-Chou;Shi, Wei-Sheng;Huang, Chun-Ming
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.231-246
    • /
    • 2017
  • A recent work by the authors has demonstrated the feasibility of scour evaluation for Kao-Ping-Hsi Cable-Stayed Bridge simply based on ambient vibration measurements. To further attain the goal of scour monitoring, a key challenge comes from the interference of several environmental factors that may also significantly alter the pier frequencies without the change of scour depth. Consequently, this study attempts to investigate the variation in certain modal frequencies of this bridge induced by several environmental factors. Four sets of pier vibration measurements were taken either during the season of plum rains, under regular summer days without rain, or in a period of typhoon. These signals are analyzed with the stochastic subspace identification and empirical mode decomposition techniques. The variations of the identified modal frequencies are then compared with those of the corresponding traffic load, air temperature, and water level. Comparison of the analyzed results elucidates that both the traffic load and the environmental temperature are negatively correlated with the bridge frequencies. However, the traffic load is clearly a more dominant factor to alternate the identified bridge deck frequency than the environmental temperature. The pier modes are also influenced by the passing traffic on the bridge deck, even though with a weaker correlation. In addition, the variation of air temperature follows a similar tendency as that of the passing traffic, but its effect on changing the bridge frequencies is obviously not as significant. As for the effect from the alternation of water level, it is observed that the frequency baselines of the pier modes may positively correlate with the water level during the seasons of plum rains and typhoon.

In-situ measurement of railway-traffic induced vibrations nearby the liquid-storage tank

  • Goktepe, Fatih;Kuyuk, Huseyin S.;Celebi, Erkan
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.583-589
    • /
    • 2017
  • In this study, result of a field investigation of railway traffic-induced vibrations is provided to examine acceptability levels of ground vibration and to evaluate the serviceability of a liquid-storage tank. Free field attenuation of the amplitudes as a function of distance is derived by six accelerometers and compared with a well-known half-space Bornitz's analytical solution which considers the loss of the amplitude of waves due to geometrical damping and material damping of Rayleigh. Bornitz's solution tends to overlap vertical free field vibration compared with in-situ measured records. The vibrations of the liquid-storage tank were compared with the USA, Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations and with the criteria in DIN 4150-3 German standard. Comparing the thresholds stated in DIN 4150-3, absolute peak particle velocities are within the safe limits, however according to FTA velocity level at the top of the water tank exceeds the allowable limits. Furthermore, it is intended to indicate experimentally the effect of the kinematic interaction caused by the foundation of the structure on the free-field vibrations.

Sound Radiation from Vibrating Bridges subjuct to Moving Vehicles (주행차량에 의한 교량의 동적거동과 음향방사특성)

  • 김상효;이용선;장원석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.45-51
    • /
    • 2002
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle 8 DOFs truck model and a 5-axle 13 DOFs semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. Although the noise produced by the bridge vibration is not serious in itself, which is below the audible frequency range, it should be considered as an interaction problem between vehicle noise and bridge vibration noise in order to evaluate the traffic noise around the bridge.

  • PDF