• Title/Summary/Keyword: traffic signal priority

Search Result 51, Processing Time 0.026 seconds

Signal Timing and Intersection Waiting Time Calculation Model using Analytical Method for Active Tram Signal Priority (해석적 방법을 이용한 능동식 트램 우선신호의 신호시간 및 교차로 대기시간 산정 모형)

  • Jeong, Youngje;Jeong, Jun Ha;Joo, Doo Hwan;Lee, Ho Won;Heo, Nak Won
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.410-420
    • /
    • 2014
  • This research suggests a new tram signal priority model which determines signal timings and tram intersection waiting time using analytical method. This model can calculate the signal timings for Early Green and Green Extension among the active tram signal priority techniques by tram detection time of upstream detector. Moreover, it can determine the tram intersection waiting time that means tram intersection travel time delay from a vantage point of tram travel. Under the active tram signal priority condition, priority phases can bring additional green time from variable green time of non-priority phases. In this study, the signal timing and tram intersection waiting time calculation model was set up using analytical methods. In case studies using an isolated intersection, this study checks tram intersection waiting time ranged 12.7 to 29.4 seconds when variable green times of non-priority phases are 44 to 10 seconds under 120 seconds of cycle length.

Simulation of Traffic Signal Control with Adaptive Priority Order through Object Extraction in Images (영상에서 객체 추출을 통한 적응형 통행 우선순위 교통신호 제어 시뮬레이션)

  • Youn, Jae-Hong;Ji, Yoo-Kang
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1051-1058
    • /
    • 2008
  • The advancement of technology for image processing and communications makes it possible for current traffic signal controllers and vehicle detection technology to make both emergency vehicle preemption and transit priority strategies as a part of integrated system. Present]y traffic signal control in crosswalk is controlled by fixed signals. The signal control keeps regular signals traffic even with no traffic, when there is traffic, should wait until the signal is given. Waiting time causes the risk of traffic accidents and traffic congestion in accordance with signal violation. To help reduce the risk of accidents and congestion, this paper explains traffic signal control system for the adaptive priority order so that signal may be preferentially given in accordance with the situation of site through the object detect images.

  • PDF

A Study on the Command Priority between Railway Traffic Controllers Based on Railway Control System Using AHP Method

  • Chae, Yun Seok;Kim, Sigon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.417-423
    • /
    • 2024
  • This study compared and analyzed the importance of command priority between railway traffic controllers through pairwise comparison of AHP analysis. 27 railway traffic controllers working on metropolitan railway control center, urban railway control center, and unmanned driving control center responded. As a result of the analysis, all the railway traffic controllers generally recognized the train driving control and train signal control as the most important priorities. For the controller in the manned driving system, a train driving control was the highest at 0.375. On the other hand, the controller based on unmanned driving recognized train signal control as the highest priority at 0.469. In the result of the AHP analysis considering all the variables, the braking system was the highest priority at 0.19 based on manned train driving. On the other hand, the controller based on unmanned train driving recognized wired and wireless network systems and SCADA as the highest priority at 0.267.

Establishment of Bus Priority Signal in Real-Time Traffic Signal Control (실시간신호제어시스템에서의 버스우선신호 알고리즘 정립 (중앙버스 전용차로를 대상으로))

  • Han, Myeong-Ju;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.101-114
    • /
    • 2006
  • Recently due to the increase of cars and city life, the traffic congestion has worsened. It Is particularly worse in the center of the metropolis. Within the general public means, the public transport buses have the advantage of being more cheap, accessible and mobile. But as there is no separate lane for buses, the collision of cars and buses are creating damage to public service. In order to solve this situation, the bus priority signal system has been introduced to reduce the bus travel time and improve its services. The purpose of this study is to establish bus priority signal algorithm which builds bus efficiency under the real-time traffic signal control system and to analyze the effect of it. As the green time was calculated against real time (under the real-time traffic signal control system), compared to existing bus priority signal there was a reduction in cross street loss. The modified cycle was used to maintain signal progression. A case study was carried out using VISSIM simulation model. In result of this study, we found that there was a decrease in bus travel time despite some evidence of car delays and compared to existing bus priority signal the delay of dishonor could be reduced dramatically. The analysed result of person delay using MOE, is that there is evidence that when bus priority signal is in effect, the person delay is reduced.

Signal Timing Calculation Model of Transit Signal Priority using Shockwave Theory (충격파 이론을 이용한 대중교통 우선신호의 신호시간 산정모형)

  • Park, Sang Sup;Cho, Hye Rim;Kim, Youngchan;Jeong, Youngje
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.897-905
    • /
    • 2015
  • This research suggested the traffic signal calculation model of active transit signal priority using a shockwave model. Using this signal priority timing optimization model, the shockwave area is computed under the condition of Early Green and Green Extension among active transit signal priority techniques. This study suggested the speed estimation method of backward shockwave using average travel time and intersection passing time. A shockwave area change is calculated according to signal timing change of transit signal priority. Moreover, this signal timing calculation model could determine the optimal signal priority timings to minimize intersection delay of general vehicles. A micro simulation analysis using VISSIM and its user application model ComInterface was applied. This study checked that this model could calculate the signal timings to minimize intersection delay considering saturation condition of traffic flow. In case studies using an isolated intersection, this study checked that this model could improve general vehicle delay of more over ten percentage as compared with equality reduction strategy of non-priority phases. Recently, transit priority facilities are spreading such as tram, BRT and median bus lane in Korea. This research has an important significance in that the proposed priority model is a new methodology that improve operation efficiency of signal intersection.

A Study on Active Priority Control Strategy for Traffic Signal Progression of Tram (트램의 연속통행을 위한 능동식 우선신호 전략 연구)

  • Lee, In-Kyu;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.25-37
    • /
    • 2014
  • Recently, our local governments are conducting the introduction of tram system because it is recognized as an effective public transit that can solve a traffic jam in downtown, decreasing public transit share and environmental issues in world wide cities. We developed the Active Priority Control Strategy to efficiently operate a tram in our existing traffic signal system. This study organized the tram system for operating the Active Priority Signal Control, developed the algorithm that calculates a tram-stop dwell time in order to pass the downstream intersection without a stop. The dwell time is determined by arrival time at tram-stop, downstream signal time, and the location of a opposite tram, it can be reduced by choosing the optimal one among Signal Priority Controls. Using the VISSIM and VISVAP model, we conducted a simulation test for the city of Chang-won that it is expected to install a tram system. It showed that a developed signal control strategy is effective to prevent a tram's stop in intersections, to reduce a tram's travel time.

Traffic Signal Control using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 교통 신호 제어)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.19-24
    • /
    • 2010
  • The number of automobiles are continuously increasing in Korea since 1990's and it causes frustrating commuting traffic and holyday traffic. Meanwhile, the obsolete traffic signal control system is still under static control based on the aggregated traffic statistics thus it is not sufficiently adaptive in real world traffic situation that changes in real time. Thus, in this paper, we propose an adaptive signal control system using fuzzy control technology that can react to real time traffic situations. The method computes the priority of signal phases based on the number of waiting automobiles and occupying time on intersection using fuzzy membership functions. The phase with highest priority obtains "proceed" signal. Also, the duration of this "proceed" signal is determined based on the ratio of number of waiting automobiles of given phase and total number of waiting automobiles on intersection. In experiment, we show that the proposed fuzzy control system is better than the static control system for all sorts of traffic congestion situations by simulation.

A Study on a Tram Signal Priority Strategy for Commercialization of the On-Board Oriented Train Control System (차상중심 열차제어시스템 실용화를 위한 트램 우선신호 전략 연구)

  • Baek, Jong-Hyen;Sung, Yu-Suk;Kim, Gonyop;Choi, Hyeon Yeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1493-1500
    • /
    • 2015
  • For efficient and economical train operation in low-density railway line, on-board oriented train control system, which reduces expensive wayside equipment, is being developed. In this paper, we discuss a tram signal priority strategy which enables efficient and safe train operation when the developing system is applied to train-tram railway environment. Based on the well-known transit signal priority strategies, we develop a tram signal priority algorithm and conduct simulations by using model-based systems engineering (MBSE) tool. Various considerations such as operation procedure, linkage to existing road traffic system, applicability with respect to crossroad types, and so on, are also dealt with.

Development of the Traffic Signal Control Strategy and Signal Controller for Tram (트램 운영을 위한 신호제어 전략 및 신호제어기의 개발)

  • Lee, In-Kyu;Kim, Youngchan;Lee, Joo Il;Oh, Seung Hwoon
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.70-80
    • /
    • 2015
  • In recent years, tram has been the focus of a new mode of public transportation that can solve traffic jams and decrease public transit usage and environmental problem. This research is in the works to develop a tram signal controller and signal control strategies, and aim to resolve the problem of what could happen if a tram system was installed in general road. We developed the hierarchical signal control strategies to obtain a minimum tram bandwidth and to minimize vehicle delay, in order to perform a priority control to include passive and active signal priority control strategies. The strategies was produced for S/W and H/W, it is based in standard traffic signal controller. We conducted a micro simulation test to evaluate the hierarchical signal control strategies, which showed that the developed optimization model is effective to prevent a tram's stop in intersection, to reduce a tram's travel time and vehicle's delay.

A Priority Signal Control Strategy for Vulnerable Considering Traffic Flow - Focusing on crosswalks in coordinated arterial sections - (교통흐름을 고려한 교통약자 우선신호 운영방안 연구 -연동화 가로구간내 횡단보도를 대상으로-)

  • Ryu, Junil;Kim, Wonchul;Kim, Hyoungchul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.12-19
    • /
    • 2014
  • A signal plan focused on vehicle traffic could easily overlook vulnerable priority signals, although the importance of vulnerable movements is increasingly recognized in recent years. Especially, the vulnerable are sometimes faced with dangerous situations when crossing roads with a signal plan based on design values of average, non-vulnerable persons. This study is focused on how to minimize the vehicle delay while simultaneously considering traffic flow and providing traffic safety by increasing road crossing time for pedestrians. For this purpose, a priority signal control strategy for the vulnerable, considering vehicle traffic flow, has been tested. Practical implication and a microscopic computer simulation has shown that the proposed method could provide a small decrease (about 6.2%) in pedestrian delay, a small increase (about 8.5~13.3%) in travel speed of passing traffic, and a considerable decrease (16.2~26.9%) in vehicle travel time. These findings suggest that the proposed signal control strategy could increase pedestrian safety and diminish delay of vehicle travel.