• Title/Summary/Keyword: traffic aware

Search Result 177, Processing Time 0.029 seconds

THERA: Two-level Hierarchical Hybrid Road-Aware Routing for Vehicular Networks

  • Abbas, Muhammad Tahir;SONG, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3369-3385
    • /
    • 2019
  • There are various research challenges in vehicular ad hoc networks (VANETs) that need to be focused until an extensive deployment of it becomes conceivable. Design and development of a scalable routing algorithm for VANETs is one of the critical issue due to frequent path disruptions caused by the vehicle's mobility. This study aims to provide a novel road-aware routing protocol for vehicular networks named as Two-level hierarchical Hybrid Road-Aware (THERA) routing for vehicular ad hoc networks. The proposed protocol is designed explicitly for inter-vehicle communication. In THERA, roads are distributed into non-overlapping road segments to reduce the routing overhead. Unlike other protocols, discovery process does not flood the network with packet broadcasts. Instead, THERA uses the concept of Gateway Vehicles (GV) for the discovery process. In addition, a route between source and destination is flexible to changing topology, as THERA only requires road segment ID and destination ID for the communication. Furthermore, Road-Aware routing reduces the traffic congestion, bypasses the single point of failure, and facilitates the network management. Finally yet importantly, this paper also proposes a probabilistical model to estimate a path duration for each road segment using the highway mobility model. The flexibility of the proposed protocol is evaluated by performing extensive simulations in NS3. We have used SUMO simulator to generate real time vehicular traffic on the roads of Gangnam, South Korea. Comparative analysis of the results confirm that routing overhead for maintaining the network topology is smaller than few previously proposed routing algorithms.

Efficient Internet Traffic Engineering based on Shortest Path Routing (최단경로 라우팅을 이용한 효율적인 인터넷 트래픽 엔지니어링)

  • 이영석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2B
    • /
    • pp.183-191
    • /
    • 2004
  • Single shortest path routing is known to perform poorly for Internet traffic engineering (TE) where the typical optimization objective is to minimize the maximum link load. Splitting traffic uniformly over equal cost multiple shortest paths in OSPF and IS-IS does not always minimize the maximum link load when multiple paths are not carefully selected for the global traffic demand matrix. However, among all the equal cost multiple shortest paths in the network, a set of TE-aware shortest paths, which reduces the maximum link load significantly, can be found and used by IP routers without any change of existing routing protocols and serious configuration overhead. While calculating TE-aware shortest paths. the destination-based forwarding constraint at a node should be satisfied, because an IP router will forward a packet to the next-hop toward the destination by looking up the destination prefix. In this paper, we present a problem formulation of finding a set of TE-aware shortest paths in ILP, and propose a simple heuristic for the problem. From the simulation results, it is shown that TE-aware shortest path routing performs better than default shortest path routing and ECMP in terms of the maximum link load with the marginal configuration overhead of changing the next-hops.

Socially Aware Device-to-multi-device User Grouping for Popular Content Distribution

  • Liu, Jianlong;Zhou, Wen'an;Lin, Lixia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4372-4394
    • /
    • 2020
  • The distribution of popular videos incurs a large amount of traffic at the base stations (BS) of networks. Device-to-multi-device (D2MD) communication has emerged an efficient radio access technology for offloading BS traffic in recent years. However, traditional studies have focused on synchronous user requests whereas asynchronous user requests are more common. Hence, offloading BS traffic in case of asynchronous user requests while considering their time-varying characteristics and the quality of experience (QoE) of video request users (VRUs) is a pressing problem. This paper uses social stability (SS) and video loading duration (VLD)-tolerant property to group VRUs and seed users (SUs) to offload BS traffic. We define the average amount of data transmission (AADT) to measure the network's capacity for offloading BS traffic. Based on this, we formulate a time-varying bipartite graph matching optimization problem. We decouple the problem into two subproblems which can be solved separately in terms of time and space. Then, we propose the socially aware D2MD user selection (SA-D2MD-S) algorithm based on finite horizon optimal stopping theory, and propose the SA-D2MD user matching (SA-D2MD-M) algorithm to solve the two subproblems. The results of simulations show that our algorithms outperform prevalent algorithms.

Flow-Based Admission Control Algorithm in the DiffServ-Aware ATM-Based MPLS Network

  • Lee, Gyu-Myoung;Choi, Jun-Kyun;Choi, Mun-Kee;Lee, Man-Seop;Jong, Sang-Gug
    • ETRI Journal
    • /
    • v.24 no.1
    • /
    • pp.43-55
    • /
    • 2002
  • This paper proposes a flow-based admission control algorithm through an Asynchronous Transfer Mode (ATM) based Multi-Protocol Label Switching (MPLS) network for multiple service class environments of Integrated Service (IntServ) and Differentiated Service (DiffServ). We propose the Integrated Packet Scheduler to accommodate IntServ and Best Effort traffic through the DiffServ-aware MPLS core network. The numerical results of the proposed algorithm achieve reliable delay-bounded Quality of Service (QoS) performance and reduce the blocking probability of high priority service in the DiffServ model. We show the performance behaviors of IntServ traffic negotiated by end users when their packets are delivered through the DiffServ-aware MPLS core network. We also show that ATM shortcut connections are well tuned with guaranteed QoS service. We validate the proposed method by numerical analysis of its performance in such areas as throughput, end-to-end delay and path utilization.

  • PDF

QoS-Aware Call Admission Control for Multimedia over CDMA Network (CDMA 무선망상의 멀티미디어 서비스를 위한 QoS 제공 호 제어 기법)

  • 정용찬;정세정;신지태
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.106-115
    • /
    • 2003
  • Diverse multimedia services will be deployed at hand on 3G-and-beyond multi-service CDMA systems in order to satisfy different quality of service (QoS) according to traffic types. In order to use appropriate resources efficiently the call admission control (CAC) as a major resource control mechanism needs to be used to take care of efficient utilization of limited resources. In this paper, we propose a QoS-aware CAC (QCAC) that is enabled to provide service fairness and service differentiation in accordance with priority order and that applies the different thresholds in received power considering different QoS requirements such as different bit error rates (BER) when adopting total received power as the ceil load estimation. The proposed QCAC calculates the different thresholds of the different traffic types based on different required BER applies it for admission policy, and can get service fairness and differentiation in terms of call dropping probability as a main performance metric. The QCAC is aware of the QoS requirement per traffic type and allows admission discrimination according to traffic types in order to minimize the probability of QoS violation. Also the CAC needs to consider the resource allocation schemes such as complete sharing (CS), complete partitioning (CP), and priority sharing(PS) in order to provide fairness and service differentiation among traffic types. Among them, PS is closely related with the proposed QCAC having differently calculated threshold per each traffic type according to traffic priority orders.

A Context-aware Task Offloading Scheme in Collaborative Vehicular Edge Computing Systems

  • Jin, Zilong;Zhang, Chengbo;Zhao, Guanzhe;Jin, Yuanfeng;Zhang, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.383-403
    • /
    • 2021
  • With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.

Adaptive Resource Allocation for Traffic Flow Control in Hybrid Networks

  • Son, Sangwoo;Rhee, Byungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.38-55
    • /
    • 2013
  • Wireless network systems provide fast data transmission rates and various services to users of mobile devices such as smartphones and smart pads. Because many people use high-performance mobile devices, the use of real-time multimedia services is increasing rapidly. However, the preoccupation of resources by real-time traffic users is causing harm to other services-for example, frequent call interference, lowered service quality, and poor network performance. This paper suggests a resource allocation algorithm for effective traffic service support in a hybrid network. The main objective is to obtain an optimum value of data rates by comparing user requirements with the amount of resources that can be allocated. A new mechanism based on Adaptive-Quality of Service (QoS) and a monitoring system based on Queue-Aware are proposed. Adaptive-QoS supports effective resource control according to the type of traffic service, and the monitoring system based on Queue-Aware measures the amount of resources in order to calculate the maximum that can be allocated. We apply our algorithm to a test system and use Qualnet 4.5.1 to evaluate its performance.

Efficient Locality-Aware Traffic Distribution in Apache Storm (Apache Storm에서 지역성을 고려한 효율적인 트래픽 분배)

  • Son, Siwoon;Lee, Sanghun;Moon, Yang-Sae
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.12
    • /
    • pp.677-683
    • /
    • 2017
  • Apache Storm is a representative real-time distributed processing system, which is able to process data streams quickly over distributed servers. Storm currently provides several stream grouping methods to distribute data traffic to multiple servers. Among them, the shuffle grouping may cause a processing delay problem and the local-or-shuffle grouping used to solve the problem may cause the problem of concentrating the traffic on a specific node. In this paper, we propose the locality-aware grouping to solve the problems that may arise in the existing Storm grouping methods. Experimental results show that the proposed locality-aware grouping is considerably superior to the existing shuffle grouping and the local-or-shuffle grouping. These results show that the new grouping is an excellent approach considering both the locality and load balancing which are limitations of the existing Storm.

An Energy-efficient Power-aware Routing Protocol based on Load-balancing for Ad hoc Networks (Ad hoc 네트워크 환경에서 부하 균등 기반의 power-aware 라우팅 프로토콜)

  • Kim Dong-hyun;Ha Rhan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.379-381
    • /
    • 2005
  • Ad hoc 네트워크에서 노드의 한정된 에너지 용량은 개설 경로의 수명과 안정성에 많은 영향을 미치는 요소이다. 따라서 이러한 에너지 한계를 극복하기 위한 다양한 power-aware 라우팅 프로토콜들이 네트워크 계층에서 제안되고 있으며, 이들 라우팅 프로토콜들은 기본적으로 노드의 배터리 잔량 에너지와 전송 전력량을 경로 탐색 과정에서 반영한다. 본 논문에서는 기존의 power-aware 라우팅 프로토콜보다 개설 경로의 동작시간을 높이고 전체 네트워크의 부하균등을 이를 수 있도록 하는 새로운 라우팅 프로토콜을 제안하며 TPR(Traffic load based power-aware routing protocol)로 명명한다. TPR은 NS-2를 이용한 성능 평가를 통해 전체 네트워크의 부하 균등과 개설 경로의 수면, 안정성 측면에서의 개선점을 확인한다.

  • PDF

DiffServ-aware-MPLS Traffic Management Scheme for QoS Guarantee (ICEIC'04)

  • Han, Cheol-Min;Kim, Byun-Gon;Kim, Nam-Hee;Chung, Myung-su;Chung, Kyung-Taek;Chon, Byoung-Sil
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.31-34
    • /
    • 2004
  • In an IP network, various types of traffics are statistically multiplexed to utilize efficiently the network resources. The DiffServ-aware-MPLS supports a wide variety of communication services with different QoS requirements. The DiffServ-aware-MPLS based on QoS architecture had become one of the most promising ways to guarantee QoS Multi-service IP network. But how to manage IP network with QoS guarantee is still an open issue. In this paper, we propose DiffServ-aware-MPLS buffer management technique using the specified policing, queuing, and scheduling

  • PDF