• 제목/요약/키워드: tradeoff of cooperation and transmission

검색결과 9건 처리시간 0.021초

Adaptive Cooperation for Bidirectional Communication in Cognitive Radio Networks

  • Gao, Yuan;Zhu, Changping;Deng, Zhixiang;Tang, Yibin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1279-1300
    • /
    • 2017
  • In the interweave cognitive networks, the interference from the primary user degrades the performance of the cognitive user transmissions. In this paper, we propose an adaptive cooperation scheme in the interweave cognitive networks to improve the performance of the cognitive user transmissions. In the proposed scheme for the bidirectional communication of two end-source cognitive users, the bidirectional communication is completed through the non-relay direct transmission, the one-way relaying cooperation transmission, and the two-way relaying cooperation transmission depending on the limited feedback from the end-sources. For the performance analysis of the proposed scheme, we derive the outage probability and the finite-SNR diversity multiplexing tradeoff (f-DMT) in a closed form, considering the imperfect spectrum sensing, the interference from the primary user, and the power allocation between the relay and the end-sources. The results show that compared with the direct transmissions (DT), the pure one-way relaying transmissions (POWRT), and the pure two-way relaying transmissions (PTWRT), the proposed scheme has better outage performance. In terms of the f-DMT, the proposed scheme outperforms the full cooperation transmissions of the POWRT and PTWRT.

Multi-Relay Cooperative Diversity Protocol with Improved Spectral Efficiency

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • 제13권3호
    • /
    • pp.240-249
    • /
    • 2011
  • Cooperative diversity protocols have attracted a great deal of attention since they are thought to be capable of providing diversity multiplexing tradeoff among single antenna wireless devices. In the high signal-to-noise ratio (SNR) region, cooperation is rarely required; hence, the spectral efficiency of the cooperative protocol can be improved by applying a proper cooperation selection technique. In this paper, we present a simple "cooperation selection" technique based on instantaneous channel measurement to improve the spectral efficiency of cooperative protocols. We show that the same instantaneous channel measurement can also be used for relay selection. In this paper two protocols are proposed-proactive and reactive; the selection of one of these protocols depends on whether the decision of cooperation selection is made before or after the transmission of the source. These protocols can successfully select cooperation along with the best relay from a set of available M relays. If the instantaneous source-to-destination channel is strong enough to support the system requirements, then the source simply transmits to the destination as a noncooperative direct transmission; otherwise, a cooperative transmission with the help of the selected best relay is chosen by the system. Analysis and simulation results show that these protocols can achieve higher order diversity with improved spectral efficiency, i.e., a higher diversity-multiplexing tradeoff in a slow-fading environment.

Optimal Cooperation and Transmission in Cooperative Spectrum Sensing for Cognitive Radio

  • Zhang, Xian;Wu, Qihui;Li, Xiaoqiang;Yun, Zi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권2호
    • /
    • pp.184-201
    • /
    • 2013
  • In this paper, we study the problem of designing the power and number of cooperative node (CN) in the cooperation phase to maximize the average throughput for secondary user (SU), under the constraint of the total cooperation and transmission power. We first investigate the scheme of cooperative spectrum sensing without a separated control channel. Then, we prove that there indeed exist an optimal CN power when the number of CNs is fixed and an optimal CN number when CN power is fixed. The case without the constraints of the power and number of CN is also studied. Finally, numerical results demonstrate the characteristics and existences of optimal CN power and number. Meanwhile, Monte Carlo simulation results match to the theoretical results well.

Naïve Decode-and-Forward Relay Achieves Optimal DMT for Cooperative Underwater Communication

  • Shin, Won-Yong;Yi, Hyoseok
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.229-234
    • /
    • 2013
  • Diversity-multiplexing tradeoff (DMT) characterizes the fundamental relationship between the diversity gain in terms of outage probability and the multiplexing gain as the normalized rate parameter r, where the limiting transmission rate is give by rlog SNR (here, SNR denote the received signal-to-noise ratio). In this paper, we analyze the DMT and performance of an underwater network with a cooperative relay. Since over an acoustic channel, the propagation delay is commonly considerably higher than the processing delay, the existing transmission protocols need to be explained accordingly. For this underwater network, we briefly describe two well-known relay transmissions: decode-and-forward (DF) and amplify-and-forward (AF). As our main result, we then show that an instantaneous DF relay scheme achieves the same DMT curve as that of multiple-input single-output channels and thus guarantees the DMT optimality, while using an instantaneous AF relay leads at most only to the DMT for the direct transmission with no cooperation. To validate our analysis, computer simulations are performed in terms of outage probability.

The Performance of Multistage Cooperation in Relay Networks

  • Vardhe, Kanchan;Reynolds, Daryl
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.499-505
    • /
    • 2015
  • We analyze the performance of multistage cooperation in decode-and-forward relay networks where the transmission between source and destination takes place in $T{\geq}2$ equal duration and orthogonal time phases with the help of relays. The source transmits only in the first time phase. All relays that can decode the source's transmission forward the source's message to the destination in the second time phase, using a space-time code. During subsequent time phases, the relays that have successfully decoded the source message using information from all previous transmitting relays, transmit the space-time coded symbols for the source's message. The non-decoding relays keep accumulating information and transmit in the later stages when they are able to decode. This process continues for T cooperation phases. We develop and analyze the outage probability of multistage cooperation protocol under orthogonal relaying. Through analytical results, we obtain the near-optimal placement strategy for relays that gives the best performance when compared with most other candidate relay location strategies of interest. For different relay network topologies, we also investigate an interesting tradeoff between an increased SNR and decreased spectral efficiency as the number of cooperation stages is increased. It is also shown that the largest multistage cooperation gain is obtained in the low and moderate SNR regime.

Performance Analysis Based on RAU Selection and Cooperation in Distributed Antenna Systems

  • Wang, Gang;Meng, Chao;Heng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5898-5916
    • /
    • 2018
  • In this paper, the downlink performance of multi-cell distributed antenna systems (DAS) with a single user in each cell is investigated. Assuming the channel state information is available at the transmitter, four transmission modes are formulated as combinations of remote antenna units (RAUs) selection and cooperative transmission, namely, non-cooperative transmission without RAU selection (NCT), cooperative transmission without RAU selection (CT), non-cooperative transmission with RAU selection (NCT_RAUS), and cooperative transmission with RAU selection (CT_RAUS). By using probability theory, the cumulative distribution function (CDF) of a user's signal to interference plus noise ratio (SINR) and the system ergodic capacity under the above four modes are determined, and their closed-form expressions are obtained. Furthermore, the system energy efficiency (EE) is studied by introducing a realistic power consumption model of DAS. An expression for determining EE is formulated, and the closed-form tradeoff relationship between spectral efficiency (SE) and EE is derived as well. Simulation results demonstrate their consistency with the theoretical analysis and reveal the factors constraining system EE, which provide a scientific basis for future design and optimization of DAS.

Tradeoff between Energy-Efficiency and Spectral-Efficiency by Cooperative Rate Splitting

  • Yang, Chungang;Yue, Jian;Sheng, Min;Li, Jiandong
    • Journal of Communications and Networks
    • /
    • 제16권2호
    • /
    • pp.121-129
    • /
    • 2014
  • The trend of an increasing demand for a high-quality user experience, coupled with a shortage of radio resources, has necessitated more advanced wireless techniques to cooperatively achieve the required quality-of-experience enhancement. In this study, we investigate the critical problem of rate splitting in heterogeneous cellular networks, where concurrent transmission, for instance, the coordinated multipoint transmission and reception of LTE-A systems, shows promise for improvement of network-wide capacity and the user experience. Unlike most current studies, which only deal with spectral efficiency enhancement, we implement an optimal rate splitting strategy to improve both spectral efficiency and energy efficiency by exploring and exploiting cooperation diversity. First, we introduce the motivation for our proposed algorithm, and then employ the typical cooperative bargaining game to formulate the problem. Next, we derive the best response function by analyzing the dual problem of the defined primal problem. The existence and uniqueness of the proposed cooperative bargaining equilibrium are proved, and more importantly, a distributed algorithm is designed to approach the optimal unique solution under mild conditions. Finally, numerical results show a performance improvement for our proposed distributed cooperative rate splitting algorithm.

Research on Per-cell Codebook based Channel Quantization for CoMP Transmission

  • Hu, Zhirui;Feng, Chunyan;Zhang, Tiankui;Gao, Qiubin;Sun, Shaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권6호
    • /
    • pp.1828-1847
    • /
    • 2014
  • Coordinated multi-point (CoMP) transmission has been regarded as a potential technology for LTE-Advanced. In frequency division duplexing systems, channel quantization is applied for reporting channel state information (CSI). Considering the dynamic number of cooperation base stations (BSs), asymmetry feature of CoMP channels and high searching complexity, simply increasing the size of the codebook used in traditional multiple antenna systems to quantize the global CSI of CoMP systems directly is infeasible. Per-cell codebook based channel quantization to quantize local CSI for each BS separately is an effective method. In this paper, the theoretical upper bounds of system throughput are derived for two codeword selection schemes, independent codeword selection (ICS) and joint codeword selection (JCS), respectively. The feedback overhead and selection complexity of these two schemes are analyzed. In the simulation, the system throughput of ICS and JCS is compared. Both analysis and simulation results show that JCS has a better tradeoff between system throughput and feedback overhead. The ICS has obvious advantage in complexity, but it needs additional phase information (PI) feedback for obtaining the approximate system throughput with JCS. Under the same number of feedback bits constraint, allocating the number of bits for channel direction information (CDI) and PI quantization can increase the system throughput, but ICS is still inferior to JCS. Based on theoretical analysis and simulation results, some recommendations are given with regard to the application of each scheme respectively.

무선광대역통신을 위한 블록부호화방식의 링크 적응 기법 (Link Adaptation Method of the Block Coded Modulation for UWB-IR)

  • 민승욱
    • 한국산학기술학회논문지
    • /
    • 제19권7호
    • /
    • pp.24-35
    • /
    • 2018
  • 무선통신 환경에서 채널상태의 변화에 대응하기 위하여 여러 개의 전송속도 중에서 적합한 하나의 전송속도를 선택하는 링크 적응기법이 사용될 수 있다. 블록부호화방식에서는 채널 상태에 적응하기 위하여 블록의 구조를 결정짓는 프레임 시간과 블록 길이 등을 변화시킬 수 있다. 프레임 타임과 블록 길이의 변화에 따라 프레임 간의 간섭의 크기가 변화하여 시스템의 성능에 영향을 준다. 프레임 시간이 크면 프레임간 간섭이 줄어 비트오율은 감소하나, 비트에 대한 전송시간이 증가하여 전송속도는 감소하게 된다. 따라서, 프레임 시간과 블록 길이는 중요한 설계 요소이다. 본 논문에서는 IEEE 802.15a에서 제안하는 채널모델에 대하여 프레임 시간의 변화에 따른 블록부호의 부호화 이득을 바탕으로 적절한 프레임 시간을 결정하는 방안을 제시한다. 또한 프레임 시간과 블록 길이의 변화가 시스템의 성능에 끼치는 영향을 분석하여 링크 적응 기법에 적용한다. 모의실험을 통하여 CM1~CM4 모델에 대하여 프레임 시간 14~50 nsec 구간에서 변화간격 2~5 nsec를 사용하여 링크 적응을 수행할 수 있다.