• Title/Summary/Keyword: traction boundary

Search Result 133, Processing Time 0.024 seconds

Elastic Analysis of a Half-Plane Containing Multiple Inclusions Using Volume Integral Equation Method (체적 적분방정식법을 이용한, 다수의 함유체를 포함한 반무한 고체에서의 탄성해석)

  • Lee, Jung-Ki;Ku, Duck-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.148-161
    • /
    • 2008
  • A volume integral equation method (VIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions subject to remote loading. A detailed analysis of stress field at the interface between the matrix and the central inclusion in the first column of square packing is carried out for different values of the distance between the center of the central inclusion in the first column of square packing of inclusions and the traction-free surface boundary in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions.

A HEAVISIDE-FUNCTION APPROACH FOR THE INTERACTION OF TWO-PHASE FLUID AND NON-DEFORMABLE SOLID

  • Kang, Myung-Joo;Min, Cho-Hong
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.147-169
    • /
    • 2012
  • We introduce a Heaviside-function formulation of the interaction between incompressible two-phase fluid and a non-deformable solid. Fluid and solid interact in two ways : fluid satises the Dirichlet boundary condition imposed by the velocity field of solid, and solid is accelerated by the surface traction exerted by fluid. The two-way couplings are formulated by the Heaviside function to the interface between solid and fluid. The cumbersome treatment of interface is taken care of by the Heaviside function, and the interaction is discretized in a simple manner. The discretization results in a stable and accurate projection method.

A Study on Logarithmic Stress Singularities and Coefficient Vectors for V-notched Cracks in Dissimilar Materials (이종재 V-노치 균열의 대수응력특이성과 계수벡터에 관한 연구)

  • 조상봉;김우진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.159-165
    • /
    • 2003
  • Most engineers interested in stress singularities have focused mainly on the research of power stress singularities for v-notched cracks in dissimilar materials. The logarithmic stress singularity was discussed a little in Bogy's paper. The power-logarithmic stress singularity was reported by Dempsey and Sinclair. It was indicated that the logarithmic singularity is only a special case of power-logarithmic stress singularities. Then, Dempsey reported specific cases which have power-logarithmic singularities even fur homogeneous boundary conditions. It was known that logarithmic stress singularities for v-notched cracks in dissimilar materials occurs when the surfaces of a v-notched crack have constant tractions. In this paper, using the complex potential method, the stresses and displacements having logarithmic stress singularities were obtained and the coefficients vectors were calculated by a numerical program code: Mathematica. It was shown that our analysis models don't have logarithmic stress singularities under the constant tractions, although the coefficient vectors are existing.

A higher order shear deformation theory for static and free vibration of FGM beam

  • Hadji, L.;Daouadji, T.H.;Tounsi, A.;Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.507-519
    • /
    • 2014
  • In this paper, a higher order shear deformation beam theory is developed for static and free vibration analysis of functionally graded beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present higher-order shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Different higher order shear deformation theories and classical beam theories were used in the analysis. A static and free vibration frequency is given for different material properties. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Optimal Shape of Fillet for Minimum Stress (최소 응력을 갖는 필렛의 형상설계)

  • Kim, Ho-Ryong;Lee, Jang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.149-161
    • /
    • 1990
  • In this study, an optimal shape design was performed on a fillet model which is subject to surface traction through minimizing the maximum stress of the fillet. A 2-dimensional quadratic isoparametirc element with 8 nodes was used in stress analysis for finite element method, and Hooke-Jeeves direct search algorithm was adopted for optimi- zation. From the resulting optimal shape, it was found that the maxium von Mises stress on the boundary of fillet was reduced by 36%, compared to other paper in which the cross sectional area of fillet was minimized. In conclusion, a real optimal fillet shape could be obtained in the viewpoint of yielding, and more pratical fillet design could be accomplished.

  • PDF

A novel four variable refined plate theory for laminated composite plates

  • Merdaci, Slimane;Tounsi, Abdelouahed;Bakora, Ahmed
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.713-732
    • /
    • 2016
  • A novel four variable refined plate theory is proposed in this work for laminated composite plates. The theory considers a parabolic distribution of the transverse shear strains, and respects the zero traction boundary conditions on the surfaces of the plate without employing shear correction coefficient. The displacement field is based on a novel kinematic in which the undetermined integral terms are used, and only four unknowns are involved. The analytical solutions of antisymmetric cross-ply and angle-ply laminates are determined via Navier technique. The obtained results from the present model are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories reported in the literature. It can be concluded that the developed theory is accurate and simple in investigating the bending and buckling responses of laminated composite plates.

An analytical approach for buckling of functionally graded plates

  • Daouadji, Tahar Hassaine;Adim, Belkacem
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.141-169
    • /
    • 2016
  • In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.

A receding contact problem of a layer resting on a half plane

  • Karabulut, Pembe Merve;Adiyaman, Gokhan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • In this paper, a receding contact problem for an elastic layer resting on a half plane is considered. The layer is pressed by two rectangular stamps placed symmetrically. It is assumed that the contact surfaces are frictionless and only compressive traction can be transmitted through the contact surfaces. In addition the effect of body forces is neglected. Firstly, the problem is solved analytically based on theory of elasticity. In this solution, the problem is reduced into a system of singular integral equations in which half contact length and contact pressures are unknowns using boundary conditions and integral transform techniques. This system is solved numerically using Gauss-Jacobi integral formulation. Secondly, two dimensional finite element analysis of the problem is carried out using ANSYS. The dimensionless quantities for the contact length and the contact pressures are calculated under various stamp size, stamp position and material properties using both solutions. The analytic results are verified by comparison with finite element results.

Finite Element Analysis Using an Analytical Solution (해석해를 이용한 유한 요소 해석법)

  • Huh, Young-Woo;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.458-463
    • /
    • 2000
  • The mechanical structures generally have discontinuous parts such as the cracks, notches and holes owing to various reasons. In this paper, in order to analyze effectively these singularity problems using the finite element method, a mixed analysis method which an analytical solution and finite element solutions are simultaneously used is newly proposed. As the analytical solution is used in the singularity region and the finite element solutions are used in the remaining regions except this singular zone, this analysis method reasonably provides for the numerical solution of a singularity problem. Through various numerical examples, it is shown that the proposed analysis method is very convenient and gives comparatively accurate solution.

  • PDF

Stress Function-Based Interlaminar Stress Analysis of Composite Laminates under Complex Loading Conditions (응력함수에 기초한 복합 하중하의 복합재 적층판의 층간응력 해석)

  • Kim, H.S.;Kim, J.Y.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.52-57
    • /
    • 2010
  • Interlaminar stresses near the free edges of composite laminates have been analyzed considering wall effects. Interface modeling of bonding layer was introduced to explain the wall effect. Using Lekhnitskii stress functions and the principle of complementary virtual work, the interlaminar stresses were obtained, which satisfied the traction free boundary conditions not only at the free edges, but also at the top and bottom surfaces of laminates. The interface modeling provides not singular stresses but concentrated finite interlaminar stresses. The significant amount of reductions of stresses at the free edge are observed compared to the results without interface modeling. The real stress state can be predicted accurately and the results demonstrate the usefulness of the proposed interface modeling for the strength design of composite laminates.