• Title/Summary/Keyword: traction boundary

Search Result 133, Processing Time 0.023 seconds

On Computation of the Stress Intensity Factors in the V-Notched Plates using a contour integral method (경로적분법 을 이용한 V-노치 평판 의 응력확대계수 계산)

  • 김진우;김선덕;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.232-240
    • /
    • 1984
  • The plane elastostatic boundary value problem with the sharp V-notched singularity is formulated by a contour integral method for determining numerically the stress intensity factors. The integral formula is based on Somigliana type of reciprocal work in terms of displacement and traction vectors on the plate boundary. The characteristic singular solutions can be identified on the basis of traction free boundary conditions of two radial notch edges. Two numerical example examples are treated in detail; a symmetric mode-I type of notched plate with various interior angles and a mixed mode type of cantilever subjected to end shear.

Segregated finite element method by introducing a improved open boundary condition (개선된 개방경계조건을 도입한 분리유한요소법)

  • Oh, Seung-Hun;Min, Tae-Gee;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.698-703
    • /
    • 2000
  • In a computational fluid dynamics, the imposition of open boundary condition has an important part of the accuracy but it is not easy to find the optimal boundary rendition. This difficult is introduced by making artificial boundary in unbounded domairs. Such open boundary requires us to ensure the continuity of all primitive variables because the nature is in continuum. Here we introduce a revised well-conditioned open boundary condition particularly in FEM and apply it to various problems-entrainment, body force, short domains.

  • PDF

A New Overmodulation Strategy for Traction Dirve. (견인용 인버터를 위한 새로운 과변조 기법)

  • 배본호;설승기;김상훈;이인석;한성수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.171-178
    • /
    • 1998
  • This paper proposes a new overmodulation strategy to give a better voltage utilization by tracking voltage vector along hexagon sides. This strategy enables the inverter to control both magnitude and angle of current. Therefore, the vector control using this strategy can lead to better output torque dynamics compared to the conventional slip frequency control with six-step voltage, which is widely used in the traction drive. In this strategy, the d-axis output voltage of a current controller to control the flux is conserved and the q-axis output voltage to control the torque is controlled to place the voltage vector on the hexagon boundary In case of overmodulation. The limited q-axis voltage is used for anti-windup of q-axis current controller. This paper also presents a new field weakening scheme which incorporate the proposed overmodulation strategy. In this scheme, the flux level is selected by both required current limit and the available maximum voltage along hexagon sides. The validity of the proposed overall scheme is confirmed by the computer simulations for a typical traction drive with a 210[㎾] induction motor.

  • PDF

Identifying Dynamic Characteristics of the Traction Motor Housing For the Noise reduction of the Electric vehicle (전기자동차 소음저감을 위한 구동모터 하우징의 동특성 평가)

  • Park, Jongchan;Park, Seungyong;Cho, Hyun-Kyu;Park, Yunsu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.818-823
    • /
    • 2012
  • Assessment of the dynamics properties, like damping, dynamic stiffness and resonance sharpness is essential for the development of a robust system, specifically for the reduction of a traction motor noise. A practical method for identifying dynamic characteristics of a traction motor hosing for an electric vehicle is proposed. Assembling using interference fit of the components of the motor is attributed to the main cause of strong nonlinearity. It is well known that nonlinearity of a structure makes it difficult to assess damping properties or dynamic characteristics of the system. This research presents a practical damping or dynamic stiffness identifying procedures for a nonlinear system according to the boundary condition between assembled components. Based on the simple idea that impact forces of modal tests are highly affected on the condition of the hammer tip, Auto Power Spectrum of the impact forces are used to assess the assembling condition and dynamic characteristics of the system, especially, damping of the system.

  • PDF

A two dimensional mixed boundary-value problem in a viscoelastic medium

  • Ataoglu, S.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.407-427
    • /
    • 2009
  • A fundamental solution for the transient, quasi-static, plane problems of linear viscoelasticity is introduced for a specific material. An integral equation has been found for any problem as a result of dynamic reciprocal identity which is written between this fundamental solution and the problem to be solved. The formulation is valid for the first, second and mixed boundary-value problems. This integral equation has been solved by BEM and algorithm of the BEM solution is explained on a sample, mixed boundary-value problem. The forms of time-displacement curves coincide with literature while time-surface traction curves being quite different in the results. The formulation does not have any singularity. Generalized functions and the integrals of them are used in a different form.

Analysis of Electric Field Distribution according to Surface Roughness of Aramid Insulating Paper Using Boundary Element Method (경계요소법을 이용한 표면 거침도에 따른 아라미드 절연지의 전계분포 해석)

  • Kim, Tag-Yong;Ahn, Byung-Chul;Cho, Kyung-Soon;Park, Hyung-Jun;Hong, Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.34-39
    • /
    • 2006
  • In this paper, we investigated the electric field distribution according to the roughness in aramid insulating paper for electric machine. Aramid insulating paper has been used to electric insulating of the traction motor and generators for large capacity. We studied the electric field distribution using boundary element method for Aramid insulating paper. As a result of simulation, the electric field increased according to the surface roughness existence. Electric field decreased due to radius of surface roughness reduction, and Electric field concentration appeared at electrode boundary and rough surface.

A Practical Finite Element Analysis Model for Hydrostatic Extrusion of a Biaxial Bar (이중봉 정수압 압출의 실용적 유한요소해석 모델)

  • Yoon, S.H.;Park, H.J.;Kim, E.Z.;Lee, S.;Lee, J.;Lee, G.A.;Kim, Y.B.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.143-149
    • /
    • 2013
  • A new finite element model for the hydrostatic extrusion of a biaxial bar is introduced. In this model, a penalty contact algorithm, which is adopted to replace the traction boundary conditions due to the fluid in the container of the extruder, is incorporated into a consistent penalty finite element formulation for the viscoplastic deformation of a work piece during hydrostatic extrusion. Two parameters, introduced in the penalty contact algorithm in this study, a critical penalty contact pressure $P_0$ and a critical penalty contact distance $D_c$, are carefully examined for various process conditions. The proposed finite element model is applied to the hydrostatic extrusion of a Cu-clad Al bar. The extrusion loads and thickness ratios of the clad materials by the proposed model are compared in detail to values from experiments reported in the literature. Finally, it is concluded that the proposed finite element model is useful in practical implementations.

An Inverse Boundary Element Method for Finding Boundary Tractions of an Elastic Body (탄성체의 경계 하중을 구하기 위한 역경계요소법)

  • Lee, Sang-Hoon;Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.223-229
    • /
    • 2009
  • Most of structural analyses are concerned with the deformation and stress in a body subjected to external loads. In many fields, however, the interpretation of inverse problems is needed to determine surface tractions or internal stresses from measured displacements. In this study, the inverse processes by using the boundary element method are formulated for the evaluation of boundary tractions from displacements measured on a remote surface. Small errors in measured displacements often result in a substantial loss of accuracy of an inverse system. Numerical results show that the error in reconstructed tractions by using the inverse boundary element methods is sensitive to measurement location and noise.

Numerical simulation of coextrusion process of viscoelastic fluids using the open boundary condition method

  • Park, Seung-Joon;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.37-45
    • /
    • 2001
  • Numerical simulation of coextrusion process of viscoelastic fluids within a die has been carried out. In the coextrusion process velocity profile at the outflow boundary is not known a priori, which makes it difficult to impose the proper boundary condition at the outflow boundary. This difficulty has been avoided by using the open boundary condition (OBC) method. In this study, elastic viscous stress splitting (EVSS) formulation with streamline upwind (SU) method has been used in the finite element method. In order to test the validity of the OBC method, comparison between the results of fully developed condition at the outlet and those of OBC has been made for a Newtonian fluid. In the case of upper convected Maxwell (UCM) fluid, the effect of outflow boundary condition on the interface position has been investigated by using two meshes having different downstream lengths. In both cases, the results with the OBC method showed reasonable interface shape. In particular, for the UCM fluid the interface shape calculated with OBC was independent of the downstream length, while the results with the zero traction condition showed oscillation of interface position close to the outlet. Viscosity difference was found to be more important than elasticity difference in determining the final interface position. However, the overshoot of interface position near the con-fluent point increased with elasticity.

  • PDF

Fracture Analysis of Concrete Structures using Boundary Element Method (경계요소법에 의한 콘크리트 구조물의 진행성 파괴해석)

  • 송하원;전재홍
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.127-134
    • /
    • 1996
  • This paper is about a progressive fracture analysis of concrete by boundary element method. From both displacement boundary integral equation and traction boundary integral equation of solids with cracks, a boundary integral equation for crack problem is derived. For the analysis of progressive fracture of concrete, fracture process zone is modelled based on Dugdale-Barenblatt model with linear tension-softening curve. By using the boundary element modeling, the progressive fractures of concrete beam and compact-tension specimens with various loading conditions are analyzed and compared with experiments. The analysis results show that the technique in this paper can predict the maximum strength and the nonlinear behavior of concrete including post-peak behavior.

  • PDF