• 제목/요약/키워드: tracked

검색결과 879건 처리시간 0.029초

그라우저 효과를 고려한 야지궤도차량의 지반추력 평가연구 (Fundamental Study on the Effect of Grousers on the Soil Thrust of Off-road Tracked Vehicles)

  • 백성하;정충기
    • 한국지반공학회논문집
    • /
    • 제34권9호
    • /
    • pp.33-42
    • /
    • 2018
  • 야지궤도차량 구동 시 무한궤도를 통해 전달된 엔진출력은 지반-궤도 접지면에서 지반을 전단시켜 슬립변위 및 지반추력을 발현시킨다. 이때 지반추력의 반력이 야지궤도차량의 구동력으로 작용하는데, 지반이 연약하여 구동에 필요한 지반추력을 확보하기 어려운 경우에는 무한궤도 표면에 그라우저를 부착하여 구동성능을 개선시킨다. 본 연구는 그라우저 효과를 적절히 고려하여 야지궤도차량의 지반추력을 평가하기 위한 기초연구로서 수행되었다. 우선 지반-궤도 접지면의 전단메커니즘을 바탕으로 그라우저가 부착된 야지궤도차량의 지반추력을 평가하기 위한 방법을 새로이 제안하였다. 이를 통해 그라우저가 야지궤도차량의 구동성능에 미치는 영향을 평가한 결과, 그라우저가 부착됨에 따라 야지궤도차량의 전체지반추력이 증가하여 구동성능이 개선되는 것을 확인하였다. 특히, 그라우저의 길이가 증가하고 간격이 가까울수록 전체지반추력 증가효과가 명확해지는 것으로 나타나, 그라우저 형상비(=간격/길이)가 작을수록 야지궤도차량의 구동성능을 더욱 크게 개선시킬 수 있을 것이라 판단된다.

로드휠의 슬립을 고려한 군용 궤도차량의 조향특성에 관한 연구 (The Steering Characteristics of Military Tracked Vehicles with Considering Slippage of Roadwheel)

  • 임원식;윤재섭;강상욱
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.57-66
    • /
    • 2009
  • In this paper, the steering characteristics of tracked vehicles are studied for the improvement of steering performance. The important design factor of military vehicles is high mobility. It is influenced by weight of a vehicle, engine capacity, power-train, and steering system. The military vehicle, which is equipped with caterpillar, has unique steering characteristics and is quite different from that of a wheeled vehicle. The steering of tracked vehicles is operated in the power pack due to different speeds of both sprockets. Under cornering conditions, power split and power regeneration are happened in the power pack. In case of power regeneration, power is transferred outside track after adding engine power and power inputted inside track from the ground. However, excessive power regeneration is transferred in the power pack. It damages mechanical elements. Therefore, it is necessary to analyze the steering system and check mentioned problem above. In this study, the detailed dynamic model of steering system is presented, which includes slippage between track and roadwheel, inertia force, and inertia moment. Finally, our model is compared with the Kitano model and we verified the validity of the model.

궤도차량 변속기 구동용 베벨기어의 개선설계 (Design Improvement of the Driving Bevel Gear in Transmissions of a Tracked Vehicle)

  • 정재웅;김광필;지현철;문태상
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.1-6
    • /
    • 2015
  • Transmission of a tracked vehicle designed for multiple functions such as steering, gear-shifting, and braking is a core component of heavy vehicle to which the power is transferred based on combined technology of various gears, bearing, and fluid machineries. Robustness and durability of transmission, however, have been issued due to a large number of driving units and sub-components inside its body. The bevel gears are major components for the transmission of power in a transmission. Increasing the tooth surface roughness and chamfering of the bevel gears, especially, we aim to improve the quality of transmission. In this study, design structural evaluation is conducted on bevel gears of transmission for tracked vehicle using the ROMAX-DESIGNER program. By doing so, design safety of the bevel gears has been evaluated based on the gear strength theory of ANSI/AGMA 2003 B97 standard.

직교행렬 실험계획법에 의한 해저연약지반 선회성능실험 연구 (An Experimental Study on Steering Performance of Seafloor Tracked Vehicle Based on Design Of Experiment Using Orthogonal Array)

  • 최종수;홍섭;김형우
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2003
  • This paper concerns about an experimental investigation about steering performance of tracked vehicle on extremely soft soil based on DOE(Design Of Experiment) using L8 orthogonal Array. A tracked vehicle model with principal dimensions of $0.9m{\times}0.8m{\times}0.4m$ and weight 167kg was constructed with a pair of driving chain links driven by two AC-servo motors. The tracks are configured with detachable grousers, the span of which can be varied. Deep seabed was simulated by means of bentonite-water mixture in a soil bin of $6.0m{\times}3.7m{\times}0.7m$. Turning radii of vehicle and torques of motors were measured with respect to experimental variables; steering ratio, driving speed, grouser chevron angle, grouser span, grouser height. The effects of experiment variables on steering performance are evaluated.

  • PDF

궤도차량 변속기 출력 축 지지구조에 따른 베어링 수명 영향 평가에 대한 연구 (A Study on the Lifetime Assessment of Bearings According to the Output Shaft Supporting Structures in Transmissions of a Tracked Vehicles)

  • 박종원;김형의
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권4호
    • /
    • pp.331-342
    • /
    • 2011
  • The transmission of tracked vehicles performs complex functions as steering, shifting, braking, etc. and the system level life time has been a key influenced by the number of sub-parts like as gear assembly, torque converter, clutches, bearings and so on. In particular, the mechanical type steering system in tracked vehicle has impact shock torques in steering shift and those kind of shock torques can effect on the durability of many sub-parts in power train system. The field failure modes of gear assembly, steering assembly and the bearings of output shaft appear as a very complex phenomenon. In this study, the actual failure, which may occur in field, of the transmission was investigated comprehensively and that the endurance test on the resulting output shaft bearing failure analysis and life assessment was performed. Life time test method used in this study, developed for the purpose of the internal usage, and under these testing techniques the impact of the each bearing damage, which used in tracked vehicle transmission left / right outputs of different structures, was analyzed.

직교배열표 실험계획법에 의한 심해 연약지반용 무한궤도차량의 견인성능에 대한 실험적 연구 (An Experimental Study about Tractive Performance of Tracked Vehicle on Deep-sea Soft Sediment Based on Design of Experiment Using Orthogonal Array)

  • 최종수;홍섭;김형우;이태희
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.333-339
    • /
    • 2004
  • This paper is concerned with an experimental investigation about tractive performance of a tracked vehicle on extremely soft soil. A tracked vehicle model with principal dimensions of $0.9\;m(L)\;{\times}\;0.75\;m(B)\;{\times}\;0.4\;m(H)$ and the weight of 167 kg was constructed with a pair of driving chain links driven by two AC-servo motors. The tracks are configured with detachable grousers with variable span. Deep seabed was simulated by means of bentonite-water mixture in a soil bin of $6.0\;m(L)\;{\times}\;3.7\;m(B)\;{\times}\;0.7\;m(H)$. Slip of vehicle and driving torque of motor were measured with respect to experimental variables; grouser span, grouser chevron angle, driving speed, drawbar-pull weight, position of center-of-gravity and weight. $L_8$ orthogonal array is adopted for DOE (Design Of Experiment). The effects of experiment variables on traction performance are evaluated.

궤도차량의 차체구조해석 (A Structural Analysis of the Tracked Vehicle)

  • 이영신;최창;전병희;오재문
    • 전산구조공학
    • /
    • 제10권3호
    • /
    • pp.145-155
    • /
    • 1997
  • 본 연구에서는 ANSYS와 ABAQUS 상용 유한요소 코드를 이용하여 궤도차량의 정적.동적 해석을 충격하중과 주행하중에 대해서 수행하였다. 궤도차량이 충격하중을 받을 때 최대 동적 Von Mises응력은 상판의 빔보강재와 레이스링사이에서 발생하였으며 응력수준은 390-450MPa이다. 정하중에 대한 동하중수 1.6을 고려했을 경우 동적 해석과 동적하중계수가 포함된 정하중 해석은 유사한 결과를 보이고 있다. 과도응력은 주로 레이싱링 주위에서 발생하고 있다. 주행하중의 경우 최대응력은 로드휠 유기압 현가장치 #1번에서 450MPa정도이며, 정적해석과 비선형 해석의 결과가 유사하다.

  • PDF

직교배열표 실험계획법에 의한 심해저 점착성 연약지반용 무한궤도차량의 선회성능에 대한 실험 연구 (An Experimental Study on Steering Performance of Tracked Vehicle on Deep-sea Cohesive Soft Soil by DOE using Orthogonal Arrays)

  • 최종수;홍섭;김형우
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.37-42
    • /
    • 2006
  • This paper is concerned with experimental investigation of steering performance of a tracked vehicle on extremely soft soil. A tracked vehicle model with principal dimensions of 0.9 m(L)x0.75 m(B)x0.4 m(H) and weight of 167 kg was constructed with a pair of driving chain links, driven by two AC-servo motors. The tracks were configured with detachable grousers with variable span. A deep seabed was simulated by means of a bentonite-water mixture in a soil bin of 6.0 m(L)x3.7 m(B)x0.7 m(H). The turning radii of vehicle and driving torques of motors were measured with respect to experiment variables: steering ratio, driving speed, grouser chevron angle, grouser span, and grouser height. L8 orthogonal table is adopted for DOE (Design of experiment). The effects of experiment variables on steering performance are evaluated.