• Title/Summary/Keyword: tracked

Search Result 879, Processing Time 0.03 seconds

Track Tension Estimation in Tracked Vehicles on Various Road Conditions (궤도차량의 다양한 노면 주행에서의 궤도장력 추정)

  • Heo, Geon-Su;Hong, Dae-Geon;Seo, Mun-Seok;Seo, Il-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2603-2609
    • /
    • 2000
  • In this paper, track tension estimation methods are developed for tracked vehicles which are subject to various maneuvering tasks such as longitudinal driving on sloping and/or rough roads. The information of the track tension is very important for the tracked vehicles because the track tension is closely related to the maneuverability and the durability of the tracked vehicles. A modified 3 DOF dynamics model is derived for the tracked vehicles and is utilized for estimating the tractive force and track tension for the longitudinal driving case. The tension estimation performance of the proposed methods is verified through the simulation of the Multi-body Dynamics tool. The simulation results demonstrate the effectiveness of the proposed method under various maneuvering tasks of the tracked vehicles.

Preview Control of High Mobility Tracked Vehicle Suspension with multiple wheels

  • Kim, Yoonsun;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.3-115
    • /
    • 2002
  • To improve the performance of the tracked vehicle system, we examined the feasibility of using the preview control for the tracked vehicles suspension system. We proposed a method to apply a linear optimal preview control to the tracked vehicle system. To avoid the complexity of modeling the track subsystem and kinematical nonlinearity in the trailing arm suspension, we classified these as unknown dynamics and disturbances. We used the Time Delay Control(TDC) method to make sprung mass dynamics follow that of linear preview controlled tracked vehicle model by compensating the uncertainties and disturbances. We have verified by the computer simulation that the proposed method shows good robus...

  • PDF

A Study on the Driving Analysis of Tracked Robot (무한궤도 로봇의 주행 해석에 관한 연구)

  • Lee, Sang-Ho;Ko, Jin-Suk;Jung, Yeon-Ha;Shin, Hyun-Soo;Kim, Chang-Joon;Lee, Seoung-Yeol;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.867-872
    • /
    • 2007
  • A tracked robot has an excellent mobility on the rough terrain. Especially, a tracked robot for driving has to get structural function in the every field. In this paper, we propose a tracked robot of a small rear wheel typed. Also compared and estimated a driving analysis about the tracked robot in considered the general environment. Compared 2 models are different in size of rear wheels but front wheels are same size each other. From comparing model, the radius of front wheels is 100mm and the radius of rear wheels is 100mm. The radius of front wheels is 100mm and the radius of rear wheels is 70mm from proposed tracked robot. Depend on these radiuses of values we are known driving torque values of an actuating wheel using Recurdyn. And estimated stress of rotated track by an actuating wheel using Ansys. finally, the designed robot has size of $600mm\;{\times}\;330mm\;{\times}\;150mm$, weight is 27kg and the tracked robot is actuated by 2 geared DC motors.

  • PDF

Prediction of Tractive Performance of Tracked Vehicles Using a Computer Simulation Model

  • Park, W.Y.;Chang, Y.C.;Lee, K.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.34-38
    • /
    • 2003
  • A mathematical model was developed for estimating the mechanical interrelation between characteristics of soil and main design factors of a tracked vehicle, and predicting the tractive performance of the tracked vehicle. Based on the mathematical model, a computer simulation program (TPPMTV) was developed in the study. The model considered the continuous change in tension for the whole track of a tracked vehicle, the analysis of shape and tension of the track segment between sprocket and first roadwheel, and the side thrust on both sides of grouser by the active earth pressure theory in predicting the tractive performance of a tracked vehicle. Also, the model contained not only sinkage depth of the track but the pressure distribution under the track in analyzing the side thrust. The effectiveness of the developed model was verified by performing the draw bar pull tests with a tracked vehicle reconstructed for test in loam soil with moisture content of 18.92%. The predicted drawbar pulls by the model were well matched to the measured ones. Such results implied that the model developed in the study could estimate the drawbar pulls well at various soil conditions, and would be very useful as a simulation tool for designing a tracked vehicle and predicting its tractive performance.

  • PDF

OPTIMAL PREVIEW CONTROL OF TRACKED VEHICLE SUSPENSION SYSTEMS

  • Youn, I.;Lee, S.;Tomizuka, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.469-475
    • /
    • 2006
  • In this paper, an optimal suspension system with preview of the road input is synthesized for a half tracked vehicle. The main goal of this research is to improve the ride comfort characteristics of a fast moving tracked vehicle in order to maintain the driver's driving capability. Several different kinds of preview control algorithms are evaluated with active or semi-active suspension systems. The road information estimated from the motion of the 1st road-wheel is adequate to make the best use of the preview control algorithm for tracked vehicles. The ride-comfort characteristics of the tracked vehicle are more dependent on pitching angular acceleration than heaving acceleration. The pitching motion is reduced by the suspension system with hard outer suspensions and soft inner suspensions. Simulation results show that the performance of sky-hook algorithms for ride comfort nearly follow that of full state feedback algorithms.

Experimental Study on Dynamic Track Tensioning System in Tracked Vehicles (궤도차량의 동적 궤도장력 조절시스템에 대한 실험적 연구)

  • Suh, Mun-Suk;Kim, Jae-Yong;Jeong, Soon-Kyu;Huh, Kun-Soo;Kim, Il-Min;Chung, Chung-Choo;Choi, Jae-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1193-1199
    • /
    • 2003
  • Maintaining track tension in tracked vehicles minimizes the excessive load on the tracks and prevents the peal-off of tracks from the road-wheel, and adequately guarantees the stable and improved driving of the tracked vehicles. However, the track tension cannot be easily measured due to the limitation in the sensor technology, harsh environment, etc. In this study, the track tension is estimated in realtime from the measurable signals of tracked vehicles and controlled based on a fuzzy logic controller. The proposed control system is implemented on tracked vehicles and its performance is evaluated under various driving conditions.

REAL-TIME SIMULATION OF A HIGH SPEED MULTIBODY TRACKED VEHICLE

  • YI K. S.;YI S.-J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.351-357
    • /
    • 2005
  • Development of a real-time simulation model for high-speed and multibody tracked vehicles is difficult because they involve hundreds of highly nonlinear equations. In the development of a reliable tracked vehicle model for real-time simulation, it is helpful to use an off-line tracked vehicle model developed by considering all the degrees of freedom of each element. This paper presents a step-by-step procedure for the development of a real-time simulation model based on the off-line tracked vehicle model. The road input data, Profile IV, is used for the real time simulation and simulation results are compared with vehicle test results obtained in the military test field. It is noted that the simulation results are quite close to the test results.

Theoretical Prediction and Experimental Substantiation of Tractive performance of Off-Road Tracked Vehicles (로외에서 운용되는 궤도형차량의 견인성능에 관한 이론적 예측과 실험적 검증)

  • 박원엽;이규승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.248-257
    • /
    • 1999
  • A mathematical model was developed to investigate the mechanical interrelation between soil characteristics and main design factors of a tracked vehicles , and predict the tractive performance of the tracked vehicles. Based on the mathematical model, a computer simulation program(TPPMTV98) was developed in this study. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMTV98 with measured ones from traction tests with a tracked vehicle reconstructed for test in loam soil with moisture content of 18.92%(d.b). The drawbar pulls measured by the TPPMTV98 were well matched to the measured ones. Such results implied that the model developed in this study could estimate the drawbar pulls well at various soil conditions , and would be very useful as a simulation tool for designing a tracked vehicle and predicting its tractive performance.

  • PDF

A Experimental Evaluation of Dynamic Track Tensioning System in Tracked Vehicle (궤도차량의 동적 궤도장력 조절시스템의 실험적 평가)

  • Huh, Kun-Soo;Suh, Mun-Suk;Kim, Jae-Yong;Jeong, Soon-Kyu;Chung, Chung-Choo;Kim, Il-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.780-785
    • /
    • 2003
  • Maintaining track tension in tracked vehicles minimizes the excessive load on the tracks and prevents the peal-off of tracks from the road-wheel, and adequately guarantees the stable and improved driving of the tracked vehicles. However, the track tension cannot be easily measured due to the limitation in the sensor technology, harsh environment, etc. In this study, the track tension is estimated in real-time from the measurable signals of tracked vehicles and controlled based on a fuzzy logic controller. The proposed control system is implemented on tracked vehicles and its performance is evaluated under various driving conditions.

  • PDF

Study of the Interaction between a Tracked Vehicle and the terrain (궤도차량과 토양의 상호관계에 대한 연구)

  • 박천서;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.144-147
    • /
    • 2001
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystem, i.e., the chassis subsystem and the track subsystem. The chassis subsystem include the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints, In this paper, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical forces and the distances of the certain track moved in the driving direction along the track. These distances and vertical forces obtained are used to calculate the sinkage of a terrain. The FEM is adopted to analyze the interaction between the tracked vehicle and terrain. The terrain is represented by a system of elements with specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of a isotropic soil are simulated.

  • PDF