• 제목/요약/키워드: track-pattern-based model

검색결과 30건 처리시간 0.025초

전동식 조향 장치의 성능 평가를 위한 신경 근육계 기반 운전자 모델 개발 (Development of Human Driver Model based on Neuromuscular System for Evaluation of Electric Power Steering System)

  • 이성현;이동필;이재풍;채흥석;이명수;이경수
    • 자동차안전학회지
    • /
    • 제9권3호
    • /
    • pp.19-23
    • /
    • 2017
  • This paper presents a lateral driver model with neuromuscular system to evaluate the performance of electric power steering (EPS). Output of most previously developed driver models is steering angle. However, in order to evaluate EPS system, driver model which results in steering torque output is needed. The proposed lateral driver model mainly consists of 2 parts: desired steering angle calculation and conversion of steering angle into steering torque. Desired steering angle calculation part results in steering angle to track desired yaw rate for path tracking. Conversion of steering angle into torque is consideration with neuromuscular system. The proposed driver model is investigated via actual driving data. Compared to other algorithms, the proposed algorithm shows similar pattern of steering angle with human driver. The proposed driver can be utilized to efficiently evaluate EPS system in simulation level.

우리나라 태양광 산업의 교역패턴 요인 분석 (Factor Analysis of Trade Patterns in Korea Photovoltaic Industry)

  • 주신애;정윤세;박현희
    • 무역학회지
    • /
    • 제41권2호
    • /
    • pp.185-202
    • /
    • 2016
  • 온실가스 감축 의무와 방사능 유출 우려 등으로 각국의 신·재생에너지에 대한 관심이 높아지고 있다. 그 중에서도 태양광은 가장 현실적인 에너지로 주목받고 있으며, 세계 시장의 수요가 증가함에 따라 한국 태양광 산업의 해외진출 및 무역요인에 관한 체계적 분석이 필요하다. 본 연구에서는 한국과 태양광 제품을 거래하는 11개국을 대상으로 1990년부터 2014년까지 총 25년간의 패널데이터를 연구하여 보았다. 중력모형을 중심으로 분석을 시행하였으며, 분석결과 한국의 태양광 제품은 일반적으로 중력모형과 일치하는 것으로 나타났다. 그러나 경제규모와 거리 이외의 요인에서는 각각 다른 결과가 도출되었다.

  • PDF

스토리 기반의 정보 검색 연구 (Story-based Information Retrieval)

  • 유은순;박승보
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.81-96
    • /
    • 2013
  • 웹의 발전과 콘텐츠 산업의 팽창으로 비디오 데이터가 폭발적으로 증가함에 따라 데이터의 정보 검색은 매우 중요한 문제가 되었다. 그동안 비디오 데이터의 정보 검색과 브라우징을 위해 비디오의 프레임(frame)이나 숏(shot)으로부터 색채(color)와 질감(texture), 모양(shape)과 같은 시각적 특징(features)들을 추출하여 비디오의 내용을 표현하고 유사도를 측정하는 내용 기반(content-based)방식의 비디오 분석이 주를 이루었다. 영화는 하위 레벨의 시청각적 정보와 상위 레벨의 스토리 정보를 포함하고 있다. 저차원의 시각적 특징을 통해 내용을 표현하는 내용 기반 분석을 영화에 적용할 경우 내용 기반 분석과 인간이 인지하는 영화의 내용 사이에는 의미적 격차(semantic gap)가 발생한다. 왜냐하면 영화의 스토리는 시간의 진행에 따라 그 내용이 변하고, 관점에 따라 주관적 해석이 가능한 고차원의 의미정보이기 때문이다. 따라서 스토리 차원의 정보 검색을 위해서는 스토리를 모델링하는 정형화된 모형이 필요하다. 최근 들어 소셜 네트워크 개념을 활용한 스토리 기반의 비디오 분석 방법들이 등장하고 있다. 그러나 영화 속 등장인물들의 소셜 네트워크를 통해 스토리를 표현하는 이 방법들은 몇 가지 문제점들을 드러내고 있다. 첫째, 등장인물들의 관계에만 초점이 맞추어져 있으며, 스토리 진행에 따른 등장인물들의 관계 변화를 역동적으로 표현하지 못한다. 둘째, 등장인물의 정체성과 심리상태를 보여주는 감정(emotion)과 같은 심층적 정보를 간과하고 있다. 셋째, 등장인물 이외에 스토리를 구성하는 사건과 배경에 대한 정보들을 반영하지 못하고 있다. 따라서 본 연구는 기존의 스토리 기반의 비디오 분석 방법들의 한계를 살펴보고, 문제 해결을 위해 문학 이론에서 제시하고 있는 서사 구조에 근거하여 스토리 모델링에 필요한 요소들을 인물, 배경, 사건의 세 가지 측면에서 제시하고자 한다.

A Study on Pattern Recognition to Compute Guidelines Based on Evidence for Ecological Healing Environment at Agha Khan Hospital in Karachi - Focused on Human Thermal Comfort Model (HTCM), for Karachi, using Climate Consultant Program

  • Shaikh, Javaria Manzoor;Park, Jae Seung
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.27-35
    • /
    • 2015
  • Purpose: Healthcare is on the whole a personal and critical service that consumer's use, whereas hospitalization is as a rule painful, because nature nurtures and Sun Light Luminosity for healthcare settings is considered healing. The performance and design of climate responsive buildings such as AKU requires a detailed study of attributes of climate both at micro as well as macro level. The therapeutic value of contact with nature through window view, greenery and landscape is calculated there. Method: A two prong strategy is been devised for this article, at micro level three typical morphologies are analysed by creating same environment of neighboring building on sun shading chart, radiation and temperature range. Since the analysis of local climate helps to determine the design strategies for hospital Healing Environment which is suitable for Karachi climate; in order to track the macro climatic behaviour, a considerable analysis of psychometrics chart for AKU Karachi are designed on Climate Consultant (CC) and analysed by Machine Learning. Climate Consultant proposes different design strategies suitable for Karachi. And on the other hand time wise illumination sources for clinical area which are then measured on psychrometric chart- according to singular space: multi patient admission, secondly: acute ambulatory ward, and tertiary: multi windowed space according to the mushrabiyah and sky light pattern. Result: Our findings support the hypothesis that windowed wall is 75-80% more healing wall; an accelerated evidence was found for healing at macro level if the form of the hospital is designed according to the climatologically preferences, whereas at micro level: the light resource becomes the staff attentiveness determinant. In Conclusion evidence was provided that the actual form of luminosity results consequently in satisfaction while light entering from several set of windows and other sources might be valued if design according to the healing environment. The data added on the sun shading chart to calculate rays entraining into space in patient room equal to 124416.21 Watts/ meter $m^2$ is calculated as precise healing rate-and is confirmed by questionnaire from patients belonging from each clinical stage having different illnesses.

랜섬웨어 분석 및 탐지패턴 자동화 모델에 관한 연구 (The Automation Model of Ransomware Analysis and Detection Pattern)

  • 이후기;성종혁;김유천;김종배;김광용
    • 한국정보통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.1581-1588
    • /
    • 2017
  • 최근 광범위하게 유포되고 있는 랜섬웨어는 단순 파일 암호화 후 금전을 요구하는 기존 방식의 공격에서 벗어나 신 변종 유포, 사회공학적 공격 방법을 이용한 표적형 유포, 광고 서버를 해킹해 랜섬웨어를 대량으로 유포하는 멀버타이징 형태의 유포, RaaS 등을 통해 더욱 고도화, 지능화되고 있다. 특히, 보안솔루션을 우회하거나 파일암호화를 통해 파라미터 확인을 불가능하게 하고, APT 공격을 접목한 타겟형 랜섬웨어 공격 등으로 공격자에 대한 추적을 어렵게 하고 있다. 이와 같은 랜섬웨어의 위협에서 벗어나기 위해 다양한 탐지기법이 개발되고 있지만 새롭게 출몰하는 랜섬웨어에 대응하기에는 힘든 상황이다. 이에 본 논문에서는 시그니처 기반의 탐지 패턴 제작 및 그 문제점에 대해 알아보고, 랜섬웨어에 보다 더 능동적으로 대처하기 위해 일련의 과정을 자동으로 진행하는 랜섬웨어 감염 탐지 패턴 자동화 모델을 제시한다. 본 모델은 기업이나 공공 보안관제센터에서 다양한 응용이 가능할 것으로 기대된다.

FCM 클러스터링 기반 비선형 기동표적의 외란분석 알고리즘 (External Noise Analysis Algorithm based on FCM Clustering for Nonlinear Maneuvering Target)

  • 손현승;박진배;주영훈
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2346-2351
    • /
    • 2011
  • This paper presents the intelligent external noise analysis method for nonlinear maneuvering target. After recognizing maneuvering pattern of the target by the proposed method, we track the state of the target. The external noise can be divided into mere noise and acceleration using only the measurement. divided noise passes through the filtering step and acceleration is punched into dynamic model to compensate expected states. The acceleration is the most deterministic factor to the maneuvering. By dividing, approximating, and compensating the acceleration, we can reduce the tracking error effectively. We use the fuzzy c-means (FCM) clustering as the method to divide external noise. FCM can separate the acceleration from the noise without criteria. It makes the criteria with the data made by measurement at every sampling time. So it can show the adaptive tracking result. The proposed method proceeds the tracking target simultaneously with the learning process. Thus it can apply to the online system. The proposed method shows the remarkable tracking result on the linear and nonlinear maneuvering. Finally, some examples are provided to show the feasibility of the proposed algorithm.

Automatic Person Identification using Multiple Cues

  • Swangpol, Danuwat;Chalidabhongse, Thanarat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1202-1205
    • /
    • 2005
  • This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.

  • PDF

행동궤적의 패턴 분류를 위한 에너지 최소화 모델 (Energy Minimization Model for Pattern Classification of the Movement Tracks)

  • 강진숙;김진숙;차의영
    • 정보처리학회논문지B
    • /
    • 제11B권3호
    • /
    • pp.281-288
    • /
    • 2004
  • 본 논문은 외부 자극에 대한 생물 행동의 복잡하고 다양한 특징들을 추출하고 분석하기 위한 방법을 제안한다. 이를 위해 물 속 생물인 깔따구의 행동궤적으로부터 얻어 낸 속도 벡터의 위상영상에 적응적이고 수리적인 방법인 에너지 최소화 모델을 적용한다. 즉, 다이아지논이라는 약물이 처리되기 전과 후의 깔따구의 행동궤적의 특징을 위상영상으로부터 찾아내어 행동 패턴을 분류하고 이 약물에 대한 깔따구의 적응적 행동 특징을 추출하는 것이다. 특징추출을 위해 도입한 방법은 T. Chan과 L. Vese에 의해 제안된 개선 Active Contour 모델에 근거한 것으로 Active Contour를 진화시키는 과정에서 생성되는 에너지함수 값의 변화를 이용한 것이다. Active Contour 모델이란 주어진 영상에 놓인 커브를 그 커브에 의해 분할된 부분영상들의 에너지 값들의 합을 최소화하는 방향으로 변화하게 함으로써 영상 내 객체의 경계를 찾는 영상분할 방법이다. 깔따구의 행동궤적 데이터는 CCD 카메라를 통해 0.25초 간격으로 약물을 처리하기 전과 후 4일 간을 관찰하여 획득하고, 이 행동궤적 데이터에서 행동의 특징 요소가 되는 속도벡터 성분을 15-20분 간격으로 추출하여 위상영상을 만든다. 그리고 이 위상영상에 Active Contour를 적용함으로써 시간에 따라 감소하는 에너지 함수 값의 그래프에서 구해진 기울기 변화에 대한 수리적 계산과 분석을 통해 깔따구 행동궤적의 특징을 찾고 행동 패턴을 분류한다. 또한, 에너지 최소화 모델은 약물 처리된 깔따구의 반응적인 행동이 이에 적응하고 있음을 효과적으로 보여준다.

플레이어 적응형 GMM 기반 동적 게임 레벨 디자인 (Player Adaptive GMM-based Dynamic Game Level Design)

  • 이상경;정기철
    • 한국게임학회 논문지
    • /
    • 제6권1호
    • /
    • pp.3-10
    • /
    • 2006
  • 게임에서 레벨 디자인 (Level Design)과 캐릭터간의 밸런스는 게임의 흥미를 결정하는 매우 중요한 요소이며, 레벨 디자이너에 의해 결정 된다. 기존의 게임에서는 플레이어가 가장 큰 재미를 느낄 수 있는 캐릭터의 공격 패턴과 속성은 정적으로 정해졌으며 스크립트 형식으로 표현됐다. 이와 같이 정적으로 정해진 레벨에 따라 진행되면 플레이어가 쉽게 적응하게 되고, 플레이어의 학습능력에 따라 레벨 디자이너가 의도했던 밸런스가 깨질 수 있었다. 이런 문제점을 해결하기 위해 본 논문에서는 게임 도중에 플레이어의 대응 패턴을 GMM(Gaussian Mixture Model)으로 모델링하고 분석하여 레벨 디자이너가 의도했던 레벨과 재미를 느낄 수 있는 환경을 제공하는 방법을 제안한다. 제안한 방법을 실제 2D슈팅게임에 적용하여 플레이어의 패턴을 분석한 결과와 동적 레벨 디자인의 결과를 보인다.

  • PDF

Development of a Path Generation and Tracking Algorithm for a Korean Auto-guidance Tillage Tractor

  • Han, Xiong-Zhe;Kim, Hak-Jin;Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: Path planning and tracking algorithms applicable to various agricultural operations, such as tillage, planting, and spraying, are needed to generate steering angles for auto-guidance tractors to track a point ahead on the path. An optimal coverage path algorithm can enable a vehicle to effectively travel across a field by following a sequence of parallel paths with fixed spacing. This study proposes a path generation and tracking algorithm for an auto-guided Korean tractor with a tillage implement that generates a path with C-type turns and follows the generated path in a paddy field. A mathematical model was developed to generate a waypoint path for a tractor in a field. This waypoint path generation model was based on minimum tractor turning radius, waypoint intervals and LBOs (Limit of Boundary Offsets). At each location, the steering angle was calculated by comparing the waypoint angle and heading angle of the tractor. A path following program was developed with Labview-CVI to automatically read the waypoints and generate steering angles for the tractor to proceed to the next waypoint. A feasibility test of the developed program for real-time path tracking was performed with a mobile platform traveling on flat ground. The test results showed that the developed algorithm generated the desired path and steering angles with acceptable accuracy.