• Title/Summary/Keyword: toxin components

Search Result 53, Processing Time 0.027 seconds

Studies for Reestablishment of Approval Toxin Amount in Paralytic Shellfish Poison-Infested Shellfish -4. Detoxification and Toxin Composition in Paralytic Shellfish Poison-Infested Oyster during Processing-

  • Jeong Hyun-Jeong;Shin Il-Shik;Kim Young-Man
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.155-160
    • /
    • 1999
  • Studies on detoxification of Paralytic Shellfish Poison (PSP)-infested oyster, Crassostrea gigas were carried out using available processing resources. Changes of paralytic shellfish toxin components and specific toxicity during canning process were also investigated with high performance liquid chromatography (HPLC). Toxic oysters collected at Hachong in Koje Bay were used for experimental samples. The toxicity of oysters with range of 185-778 ug/100g was reduced below the quarantine limit of 80 ug/100g or not detected level by the mouse bioassay after canning process. The mole $\%$ of toxin components in the shucked oyster was in the order of 25.1 mole $\%$ of gonyautoxin 1, 19.2 mole $\%$ of gonyautoxin 3, 17.2 mole $\%$ of gonyautoxin 4 and 14.6 mole $\%$ of gonyautoxin 2. This sample had tracing amounts of Cl, C2, saxitoxin and neosaxitoxin. In the case of specific toxicity, the major toxins were consisted of gonyautoxin 1-4. The sum of gonyautoxin 1, 2, 3 and 4 was 80% of total toxicity of oyster. Saxitoxin and decarbamoylsaxitoxin were the more thermostable than any other toxin components.

  • PDF

Occurrence of Toxic Alexandrium and Intoxification of Two Mollusk Species by Paralytic Shellfish Poisoning Toxins on the Southeastern Coast of Korea

  • Kim Young-Soo;Lee Jong-Soo;Jang Joon-Ho;Kim Keun-Yong;Kim Chang-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.2
    • /
    • pp.76-82
    • /
    • 2005
  • We analyzed the paralytic shellfish poisoning (PSP) toxins of the toxic marine dinoflagellate Alexandrium tamarense collected from Dadaepo and Gaduck-do in Busan and from Sujeong-ri in Jinhae Bay, Korea, in April 2003. We also analyzed the PSP toxin of mussels (Mytilus galloprovincialis) and oysters (Crassostrea gigas) collected around Busan and Jinhae Bay. PSP toxin analyses were conducted by high performance liquid chromatography (HPLC). Fifteen cultured A. tamarense isolates contained 2.78 to 57.47 fmol/cell, with nearly identical toxin profiles: major components C2, GTX4; minor components C1, GTX1, NEO; and trace components GTX2, GTX3, STX. PSP toxin contents were 0 to $492\;\mu{g}$ STXeq/100 g in mussels and 0 to $48\;\mu{g}$ STXeq/100 g in oysters. Mussels at Gijang and Sujeong-ri contained the most PSP toxin contents ($492\;\mu{g}\;STXeq/100\;g\;and\;252\;\mu{g}\;STXeq/100\;g,\;respectively$), exceeding the quarantine level ($80\;\mu{g}$ STXeq/100 g). Their dominant toxin components were C2, C1, GTX2, and GTX3; the minor components GTX1, GTX4, GTX5, and NEO were sporadically detected. Phytoplankton contained 0.774 fmol/L seawater and 1.228 fmol/L seawater at Gijang and Sujeong-ri in April. At that time, Alexandrium cells were present in the water column at Gijang at 2,577 cells/mL and at Sujeong-ri at 6,750 cells/mL. Overall, we found the high and similar PSP toxin contents in AZexandrium isolates and mussels, and a correlation between occurrence of toxic Alexandrium cells in the water column and mussel intoxification. High densities of toxic Alexandrium cells in the water column immediately preceded shellfish intoxification at Gijang and Sujeong-ri in April.

Species classification of the toxic dinoflagellate Alexandrium tamarense and A. catenella based on their paralytic shellfish toxin profiles

  • Kim, Young-Soo;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.128-128
    • /
    • 2003
  • The annually outbreak of paralytic shellfish poisoning (PSP) were caused by toxic dinolagellate A. tamarense and A. catenella in Korea. The purpose of this study were to investigate the distribution of PSP-causative organisms, A. tamarense and A. catenella and their species classification. Sediment (Saemangeum, the south open sea) and water samples (southeastern coast) were sampled to establish clonal isolates in 2003. After isolation and purification, strains were cultured under $17^{\circ}C$, f/2 media, 14:10=L:D cycle. PST analysis and species identification were performed by HPLC-FD method and specific DNA probe, respectively. Thirty-ons strains were isolated from the Saemangeum reclamation, southeastern coast including Jinhae Bay and south open sea. PSTs were detected in all cultured strains. In eight strains from south offshore, major toxin components are GTX5, C1/2 and minors are GTX3/4, dcGTX3, neoSTX. Sixteen strains from south coastal area have GTX1/4, neoSTX, C1/2 as major toxin components and GTX2/3 as minors. Seven strains from the Saemangeum reclamation have GTX5, C1/2 as major toxin components and GTX1/2/3/4 as minors. Thus, among eight south offshore isolates, four A. tamarense have more toxic (38.31~l19.16 fmol.$cell^{-1}$) than A. catenella (3.78~13.13 fmol.$cell^{-1}$). With the previous results of different toxin composition, toxin components and toxin contents, .it is toxin profile that could used to diagnosis of regional toxic population and geographical distribution of both A. tamarense and A. catenella and their toxigenic strains.

  • PDF

Studies for Reestabilishment of Approval Toxin Amount in Paralytic Shellfish Poison-Infested Shellfish 2. Change of Toxin Composition and Specific Toxicity in Paralytic Shellfish Toxins of Blue mussel, Mytilus edulis and, Oyster, Crassostrea gigas from Woepori, $K\v{o}je$, Korea During Canning Process

  • SHIN Il-Shik;CHOI Su-Ho;LEE Tae-Sik;LEE Hi-Jung;KIM Ji-Hoe;LEE Jong-Soo;KIM Young-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.900-908
    • /
    • 1996
  • Changes of paralytic shellfish toxin components and specific toxicity in blue mussel, Mytilus edu/is and oyster, Crassostrea gigas during canning process were investigated by high performance liquid chromatography (HPLC). The $mole\%$ of the frozen shucked blue mussel were in order of $27.5\;mole\%$ of gonyautoxin 1, $23.0\;mole\%$ of gonyautoxin 8 (C1) and $23.0\;mole\%$ of epi-gonyautoxin 8 (C2), while those of the frozen shucked oyster were in order of $29\;mole\%$ of C1, $22\;mole\%$ of C2, $16.7\;mole\%$ of gonyautoxin 2. Both samples had minor amounts of saxitoxin and neosaxitoxin. On the other hand, in case of specific toxicity, the major toxins were consisted of gonyautoxin $1\~4$ in both sample. The toxicity of gonyautoxin $1\~4$ were 88 and $84\%$ in blue mussel and oyster, respectively. According to the experimental results, C1, C2 and gonyautoxin 4 were very sensitive to heat treatment, while gonyautoxin 2 and saxitoxin were pretty heat resistant than any other toxin components.

  • PDF

Variation and Profile of Paralytic Shellfish Poisoning Toxins in Jinhae Bay, Korea

  • Mok, Jong-Soo;Song, Ki-Cheol;Lee, Ka-Jeong;Kim, Ji-Hoe
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.137-142
    • /
    • 2013
  • To understand critical aspects of paralytic shellfish poisoning (PSP) in a chief area of bivalve production in Korea, seasonal variation in PSP toxins in bivalves collected from Jinhae Bay, Korea in 2009 was surveyed by the pre-column high-performance liquid chromatography oxidation method. We also confirmed the profiles of major bivalves such as oysters Crassostrea gigas and mussels Mytilus galloprovincialis in Jinhae Bay. PSP toxins in the bivalves showed remarkable seasonal variation. PSP toxin levels were detected from April to May in 2009, and the highest total toxin levels at all stations were recorded in May. The major toxins in bivalves were gonyautoxin [GTX] 1&4 and C 1&2; in oysters GTX 2&3 were also detected as major components. GTX 1&4, which showed the highest PSP toxin levels at each station, accounted for the highest proportions of toxin components in mussels and oysters (64.5-71.3% and 41.4-42.4%, respectively). It was also confirmed that the highest toxicity (in ${\mu}g$ saxitoxin [STX] eq/g) was derived from GTX 1&4. The highest total toxicity (in ${\mu}g$ STX eq/g) was approximately 2-8-fold higher in mussels than in oysters collected from the same station. PSP toxin levels in bivalves differed significantly according to the sample collection station. However, the profiles of toxins in the bivalves did not show significant differences during the survey period according to sample collection station. This study shows that PSP toxin levels in some samples from Jinhae Bay were above the regulatory limit in Korea during a specific period in spring.

Studies on Toxic Components of Auricularia polytricha (털목이버섯의 독성(毒性)에 관한 연구(硏究))

  • Kim, Ha-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.4
    • /
    • pp.221-226
    • /
    • 1985
  • To screen biologically active components of the higher fungi of Korea, the dried carpophores of Auricularia polytricha were extracted with water. The extract was examined for acute toxicity in ICR mice. A low molecular weight toxin of this fungus was purified by acetone precipitation followed by cellulose, silica gel and LH-20 Sephadex column chromatography. Major symptoms of this toxin were eye extrusion, hair erection, trembling of head, paralysis, rapid running or moving before death and depression of respiration. The median lethal doses of the total extract were 1.25 g/kg and 4.18 g/kg by i.p. and p.o. administrations, respectively. The amounts of one mouse lethal unit (MLU) of the total extract and final fraction that killed a 20-g mouse within 30 minutes were 28.5 mg/mouse and 12 mg/mouse, respectively.

  • PDF

Insecticidal Toxin and Research Trends of Photorhabdus, Entomopathogenic Bacteria (곤충살충성 세균 Photorhabdus의 Insecticidal Toxin과 연구동향)

  • Jang, Eun-Kyung;Shin, Jae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • BT toxin is produced by a soil bacterium Bacillus thuringiensis and has long been used as a biological insecticide without any competition. Recently, Photorhabdus, a symbiotic bacterium from entomopathogenic nematodes, family Heterorhabditae, has been researched and discussed as alternatives to B. thuringiensis. Photorhabdus, which lives in the gut of entomopathogenic nematodes, is a highly virulent pathogen of a wide range of insect larvae. When an insect is infected by the nematodes, the bacteria are released into the cadaver, and produce a number of insecticidal toxins. The biological role of the different Photorhabdus toxins in the infection process is still unclear. Photorhabdus toxin complex (Tc) is highly secreted gut-active toxin and has been characterized as a potent three-component (A, B and C) insecticidal protein complex. These components are necessary for full oral activity against insect larvae. The Photorhabdus PirAB binary toxins exhibit a potent injectable activity for Galleria mellonella larvae, and have oral toxicity against mosquitoes and caterpillar pest Plutella xylostella. Other toxin, 'makes caterpillars floppy' (Mcf) showed injectable activity on caterpillars. Recombinant Mcf triggers apoptosis in both insect hemocytes and the midgut epithelium and carries a BH3 domain. In this review, the relationship between the Photorhabdus and the nematode is discussed and recent important insecticidal toxins from Photorhabdus are described.

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna;Maiti, Mrinal K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.937-946
    • /
    • 2011
  • Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

Preliminary Investigation of Membrane Modifying Effects of Ginseng Components (인삼성분 및 제제의 생체막 보호 효과에 대한 연구)

  • 한덕룡;김창종
    • Journal of Ginseng Research
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 1987
  • Prophylactic and curative behaviors of Panax ginseng components (95%, 50% ethanol ext., ginsenoside Re and Ginsana G 115) on the hepatomegaly, lipid peroxidation of the thioacetamide-intoxicated animals in vivo and in vitro were investigated. Ginsenoside Re and Ginsana G 115 significantly decreased in the lipid peroxide formation : the 95% ethanol extract and ginsenoside Re, in the zinc sulfate turbidity test. Besides these investigations, the preventive effect of ginseng components on the degranulation of mast calls in the guinea pig mesentery by compound 48/80 and venom toxin (Agkistrodon piscivourus) was also examined. All ginseng components subjected to this experiment were affected significantly at the different degrees.

  • PDF

Paralytic Shellfish Poisoning Toxin Accumulation in Four Mussel Species Fed on Toxic Alexandrium tamarense (독성 Alexandrium tamarense를 섭취한 담치류 4종의 마비성패독 축적)

  • Kim, Young-Soo;Shon, Myung-Back;Kim, Chang-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • Cultured cells of the toxic Alexandrium tamarense were fed to four mussel species, Mytilus coruscus, M. edulis, M. galloprovincialis and Septifer vulgatus, to examine the interspecies and interlocality differences in the ability to accumulate paralytic shellfish poisoning (PSP) toxins. Toxin content of A. tamarense cells varied during culture period. In contrast, toxin composition in the cell (C1,2, GTX1-4 and neoSTX) was constantly stable. In feeding experiment, the four mussel species collected from Geoje intoxicated after uptake of A. tamarense. Toxin content ($average{\pm}SD\;{\mu}g$ STXeq/100 g) of M. coruscus, M. edulis, M. galloprovincialis and Septifer vulgatus were $1,660{\pm}79,\;3,914{\pm}2,242,\;5,626{\pm}1,620\;and\;958{\pm}163$, respectively. Toxin profiles included C1,2, GTX1,4 and neoSTX as the major components, and dcGTX2,3, GTX2,3, neoSTX and STX as the minor ones. Toxin accumulation of three mussel species collected from Pohang, Geoje and Anmyon-do showed interspecies and interlocality differences. Toxin content ($average{\pm}SD\;{\mu}g$ STXeq/100 g) were $91{\pm}4,\;151{\pm}14,\;39{\pm}3$ in M coruscus, $189{\pm}1,\;231{\pm}11,\;206{\pm}15$ in M edu/is and $214{\pm}28,\;326{\pm}30,\;291{\pm}26$ in M. galloprovincialis in order of Anmyon-do, Geoje and Pohang.