• Title/Summary/Keyword: toxin/antitoxin system

Search Result 9, Processing Time 0.028 seconds

Genetic Characterization of Two Putative Toxin-Antitoxin Systems on Cryptic Plasm ids from Bacillus thuringiensis Strain YBT-1520

  • Liu, Xiaojin;Zhu, Shufang;Ye, Weixing;Ruan, Lifang;Yu, Ziniu;Zhao, Changming;Sun, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1630-1633
    • /
    • 2008
  • A novel putative toxin-antitoxin segregational stability system named KyAB system was identified in a novel native plasmid pBMB8240 from Bacillus thuringiensis strain YBT-1520, based on sequences homology with other toxin-antitoxin systems, the lethal activity of the KyB putative toxin in Escherichia coli and the stabilizing effect of the kyAB system in Bacillus thuringiensis. Secondarily, the native plasmid pBMB9741 from the same strain was resequenced and the corrected plasmid was named as pBMB7635. Based on sequence homology with the tasAB system and the lethal activity of toxin protein in Escherichia coli, a tasAB-like putative toxin-antitoxin system was identified on pBMB7635.

Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications (박테리아의 toxin-antitoxin system과 생명공학기술 응용)

  • Kim, Yoonji;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.265-274
    • /
    • 2016
  • Toxin-antitoxin (TA) systems are ubiquitous genetic modules that are evolutionally conserved in bacteria and archaea. TA systems composed of an intracellular toxin and its antidote (antitoxin) are currently classified into five types. Commonly, activation of toxins under stress conditions inhibits diverse cellular processes and consequently induces cell death or reversible growth inhibition. These effects of toxins play various physiological roles in such as regulation of gene expression, growth control (stress response), programmed cell arrest, persister cells, programmed cell death, phage protection, stabilization of mobile genetic elements or postsegregational killing of plasmid-free cells. Accordingly, bacterial TA systems are commonly considered as stress-responsive genetic modules. However, molecule screening for activation of toxin in TA system is available as development of antimicrobial agents. In addition, cytotoxic effect induced by toxin is used as effective cloning method with antitoxic effect of antitoxin; consequently cells containing cloning vector inserted a target gene can survive and false-positive transformants are removed. Also, TA system is applicable to efficient single protein production in biotechnology industry because toxins that are site-specific ribonuclease inhibit protein synthesis except for target protein. Furthermore, some TA systems that induce apoptosis in eukaryotic cells such as cancer cells or virus-infected cells would have a wide range of applications in eukaryotes, and it will lead to new ways of treating human disease. In this review, we summarize the current knowledge on bacterial TA systems and their applications.

Studies on a Toxin/Antitoxin System in Streptococcus iniae (어류병원균 Streptococcus iniae의 toxin/antitoxin system에 대한 연구)

  • Yoon, Seongyong;Kim, Yeon Ha;Jeun, Moonjung;Seong, Minji;Yoo, Ah Young;Lee, Donghee;Moon, Ki Hwan;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2019
  • Streptococcus iniae is a typical fish pathogen causing streptococcosis and it can also cause zoonotic infectious diseases. We studied S. iniae FP5228 isolated from infected olive flounder in Wando, Korea. In a study to find virulence factors in FP5228, we found that the number of live bacteria decreased dramatically in culture medium containing S. iniae FP5228 for more than 24 hr. This phenomenon was hypothesized to be related to Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ genes, components of the Toxin/ Antitoxin (TA) system on the 14 kb plasmid of FP5228. We used a protein overexpression system to identify it. The pBP1140 vector system was constructed to regulate the expression of Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ by IPTG and Arabinose. E. coli/pBP1140 strain grew slowly in early growth under toxin expression condition, and it was confirmed by microscopic observation that the strain became longer. S. iniae CK287, lacking a 14 kb plasmid of S. iniae FP5228 strain, was constructed. CK287 bacterial cells did not show rapid killing during culture, and the ability to produce biofilm was also decreased, and toxicity was weakened in cytotoxicity test and fish test. These results suggest that the TA system is involved in physiological regulation and expression of virulence factors in S. iniae FP5228.

Substrate specificity of bacterial endoribonuclease toxins

  • Han, Yoontak;Lee, Eun-Jin
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.611-621
    • /
    • 2020
  • Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.

Functional Characterization of the C-Terminus of YhaV in the Escherichia coli PrlF-YhaV Toxin-Antitoxin System

  • Choi, Wonho;Yoon, Min-Ho;Park, Jung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.987-996
    • /
    • 2018
  • Bacterial programmed cell death is regulated by the toxin-antitoxin (TA) system. YhaV (toxin) and Pr1F (antitoxin) have been recently identified as a type II TA system in Escherichia coli. YhaV homologs have conserved active residues within the C-terminus, and to characterize the function of this region, we purified native YhaV protein (without denaturing) and constructed YhaV proteins of varying lengths. Here, we report a new low-temperature method of purifying native YhaV, which is notable given the existing challenges of purifying this highly toxic protein. The secondary structures and thermostability of the purified native protein were characterized and no significant structural destruction was observed, suggesting that the observed inhibition of cell growth in vivo was not the result of structural protein damage. However, it has been reported that excessive levels of protein expression may result in protein misfolding and changes in cell growth and mRNA stability. To exclude this possibility, we used an [$^{35}S$]-methionine prokaryotic cell-free protein synthesis system in vitro in the presence of purified YhaV, and two C-terminal truncated forms of this protein (YhaV-L and YhaV-S). Our results suggest that the YhaV C-terminal region is essential for mRNA interferase activity, and the W143 or H154 residues may play an analogous role to Y87 of RelE.

In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system

  • Maisha Tasneem;Shipan Das Gupta;Monira Binte Momin;Kazi Modasser Hossain;Tasnim Binta Osman;Fazley Rabbi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2023
  • The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TAS) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TAS PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TAS create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.

Pan-Genomics of Lactobacillus plantarum Revealed Group-Specific Genomic Profiles without Habitat Association

  • Choi, Sukjung;Jin, Gwi-Deuk;Park, Jongbin;You, Inhwan;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1352-1359
    • /
    • 2018
  • Lactobacillus plantarum is a lactic acid bacterium that promotes animal intestinal health as a probiotic and is found in a wide variety of habitats. Here, we investigated the genomic features of different clusters of L. plantarum strains via pan-genomic analysis. We compared the genomes of 108 L. plantarum strains that were available from the NCBI GenBank database. These genomes were 2.9-3.7 Mbp in size and 44-45% in G+C content. A total of 8,847 orthologs were collected, and 1,709 genes were identified to be shared as core genes by all the strains analyzed. On the basis of SNPs from the core genes, 108 strains were clustered into five major groups (G1-G5) that are different from previous reports and are not clearly associated with habitats. Analysis of group-specific enriched or depleted genes revealed that G1 and G2 were rich in genes for carbohydrate utilization (${\text\tiny{L}}-arabinose$, ${\text\tiny{L}}-rhamnose$, and fructooligosaccharides) and that G3, G4, and G5 possessed more genes for the restriction-modification system and MazEF toxin-antitoxin. These results indicate that there are critical differences in gene content and survival strategies among genetically clustered L. plantarum strains, regardless of habitats.

Genome sequence of Veillonella atypica KHUD-V1 isolated from a human subgingival dental plaque of periodontitis lesion (사람 치주염 병소의 치은 연하 치태에서 분리된 Veillonella atypica KHUD-V1의 유전체 염기서열 해독)

  • Lee, Jae-Hyung;Shin, Seung-Yun;Lee, Han;Yang, Seok Bin;Jang, Eun-Young;Ryu, Jae-In;Lee, Jin-Yong;Moon, Ji-Hoi
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.77-79
    • /
    • 2019
  • Here we report the genome sequence of Veillonella atypica strain KHUD-V1 isolated from subgingival dental plaque of Korean chronic periodontitis patients. Unlike other V. atypica strains, KHUD-V1 carries two prophage regions and prophage remnants, as well as several genes homologous to prophage-associated virulence factors, such as virulence-associated protein E, a Clp protease, and a toxin-antitoxin system. The isolate and its genome sequence obtained here will aid to understand the diversity of the genome architecture of Veillonella within an evolutionary framework and the role of prophages that contribute to the genetic diversity as well as the virulence of V. atypica.

Metagenome-Assembled Genomes of Komagataeibacter from Kombucha Exposed to Mars-Like Conditions Reveal the Secrets in Tolerating Extraterrestrial Stresses

  • Lee, Imchang;Podolich, Olga;Brenig, Bertram;Tiwari, Sandeep;Azevedo, Vasco;de Carvalho, Daniel Santana;Uetanabaro, Ana Paula Trovatti;Goes-Neto, Aristoteles;Alzahrani, Khalid J.;Reva, Oleg;Kozyrovska, Natalia;de Vera, Jean-Pierre;Barh, Debmalya;Kim, Bong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.967-975
    • /
    • 2022
  • Kombucha mutualistic community (KMC) is composed by acetic acid bacteria and yeasts, producing fermented tea with health benefits. As part of the BIOlogy and Mars EXperiment (BIOMEX) project, the effect of Mars-like conditions on the KMC was analyzed. Here, we analyzed metagenome-assembled genomes (MAGs) of the Komagataeibacter, which is a predominant genus in KMC, to understand their roles in the KMC after exposure to Mars-like conditions (outside the International Space Station) based on functional genetic elements. We constructed three MAGs: K. hansenii, K. rhaeticus, and K. oboediens. Our results showed that (i) K. oboediens MAG functionally more complex than K. hansenii, (ii) K. hansenii is a keystone in KMCs with specific functional features to tolerate extreme stress, and (iii) genes related to the PPDK, betaine biosynthesis, polyamines biosynthesis, sulfate-sulfur assimilation pathway as well as type II toxin-antitoxin (TA) system, quorum sensing (QS) system, and cellulose production could play important roles in the resilience of KMC after exposure to Mars-like stress. Our findings show the potential mechanisms through which Komagataeibacter tolerates the extraterrestrial stress and will help to understand minimal microbial composition of KMC for space travelers.