• Title/Summary/Keyword: toxigenic

Search Result 82, Processing Time 0.03 seconds

PCR technique for detection of toxigenic Pasteurella multocida in mixed bacterial cultures from pigs (Polymerase chain reaction을 이용한 독소생산성 Pasteurella multocida의 검출)

  • Chi, Yongzhe;Lee, Dong-seok;Han, Jeong-hee;Han, Kyung-soo;Hahn, Tae-wook
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.56-62
    • /
    • 2000
  • Pasteurella multocida is kind of commensal bacteria in the upper respiratory tract of pigs. It is classified toxigenic and nontoxigenic strains based on the production of dermonecrotic toxin. Toxigenic strain is most associated with atrophic rhinitis which brings great economical loss in swine industry. However, toxigenic and nontoxigenic strains do not differ by diagnostic biochemical reaction or morphology. One of recently developed techniques, PCR detects the toxigenic P multocida. Amplification of an 846-nucleotide fragment of toxA gene was developed. The fragment amplified by PCR was detected in P multocida type D not type A. The PCR amplification was as sensitive as it could detect 1 pg of P multocida DNA. We compared the result of the PCR with the enzyme linked immunosorbent assay (ELISA) in a test for 40 swine nasal swabs. All of these isolates were toxin negative based on the ELISA while 2 isolates were detected in the PCR technique. in addition to accuracy, as required for rapid detection from contaminated nasal swabs, toxigenic P multocida was recovered efficiently from contaminated culture without inhibition of the PCR. The results show that the PCR detection of toxigenic P multocida directly form nasal swabs are feasible.

  • PDF

Isolation of Antifungal Lactic Acid Bacteria (LAB) from "Kunu" against Toxigenic Aspergillus flavus

  • Olonisakin, Oluwafunmilayo Oluwakemi;Jeff-Agboola, Yemisi Adefunke;Ogidi, Clement Olusola;Akinyele, Bamidele Juliet
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.138-143
    • /
    • 2017
  • The antifungal activity of isolated lactic acid bacteria (LAB) from a locally fermented cereal, "Kunu", was tested against toxigenic Aspergillus flavus. The liquid refreshment, "Kunu", was prepared under hygienic condition using millet, sorghum, and the combination of the two grains. The antifungal potential of isolated LAB against toxigenic A. flavus was carried out using both in vitro and in vivo antifungal assays. The LAB count from prepared "Kunu" ranged from $2.80{\times}10^4CFU/mL$ to $4.10{\times}10^4CFU/mL$ and Lactobacillus plantarum, Lactobacillus delbrueckii, Lactobacillus fermentum, Pediococcus acidilactici, and Leuconostoc mesenteroides were the isolated bacteria. Inhibitory zones exhibited by LAB against toxigenic A. flavus ranged from 5.0 mm to 20.0 mm. The albino mice infected with toxigenic A. flavus showed sluggishness, decrease in body weight, distortion of hair, and presence of blood in their stool, while those treated with LAB after infection were recovered and active like those in control groups. Except for the white blood cell that was increased in the infected mice as $6.73mm^3$, the packed cell volume, hemoglobin, and red blood cell in infected animals were significantly reduced (P<0.05) to 29.28%, 10.06%, and 4.28%, respectively, when compared to the treated mice with LAB and control groups. The antifungal activity of LAB against toxigenic A. flavus can be attributed to the antimicrobial metabolites. These metabolites can be extracted and used as biopreservatives in food products to substitute the use of chemical preservatives that is not appealing to consumers due to several side effects.

Toxicity and Fumonisin B1 Production by Fusarium Isolates from Chines Corn Samples (중국산 옥수수로부터 분리한 Fusarium균주의 독성 및 Fumonisin B1의 생성)

  • 이인원;강효중
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.129-135
    • /
    • 1994
  • Ninety-two isolates of Fusarium species were obtained from Chinese corn samples. The predominant Fusarium species isolated from corn seeds were F. moniliforme, F. proliferatum, F. oxysporum and F. subglutinans, and all 13 species were identified. Each isolate was grown on autoclaved wheat grains and wheat cultures were fed by twenty-one-day-old female rats for the toxicity test. Twenty-six out of 92 isolates caused the death accompanying feed refusal, severe weight loss, liver damage, and hemorrhages in the stomach and intestines. Of the toxigenic isolates, 17 isolates of F. moniliforme, 4 of F. oxysporum, 3 of F. proliferatum, and one of each F. sporotrichioides and unknown species were lethal to rats. The analyses of fumonisin B1 production of the 26 toxigenic Fusarium isolates were carried out by thin layer chromatography and high-performance liquid chromatography, and fumonisin B1 was confirmed by mass spectrometry. Fumonisin B1 was produced in wheat culture at levels ranging from 280 $\mu\textrm{g}$/g to 3,952 $\mu\textrm{g}$/g by all of toxigenic F. moniliforme and F. proliferatum, but by none of the other toxigenic Fusarium species. The present results suggest the high possibility of natural occurrence of fumonisin B1 in corn samples imported from China.

  • PDF

Evaluation of the Selective Enrichment Culture to Recover Clostridium difficile

  • An, Byoungrak;Kim, Heejung;Lee, Kyungwon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.4
    • /
    • pp.140-142
    • /
    • 2014
  • To evaluate the recovery rates to increase toxigenic C. difficile, the selective enrichment broth culture methods were compared with commonly used cytotoxin assays and toxigenic culture. First, the enrichment culture, using the selective medium broth for 2 to 5 days, was performed and then, toxigenic C. difficile was confirmed by C. difficile toxin gene-specific PCR after being cultured on C. difficile selective agar. The sensitivity of C. difficile from the enrichment culture (100%) was higher than that of C. difficile selective agar culture (93.8%), while positive predictive values (PPV) were low; 72.7% (16/22) and 88.2% (15/17). PPV of the enrichment culture are not high. Recently, combinations of C. difficile selective agar culture, C. difficile A & B assays, glutamate dehydrogenase, and nucleic acid amplification method are widely used. The enrichment culture was disadvantageous in PPV, turn-around time, and cost. So, what we performed is not considered as a common method of diagnosis of C. difficile-associated diarrhea.

Raw Animal Meats as Potential Sources of Clostridium difficile in Al-Jouf, Saudi Arabia

  • Taha, Ahmed E.
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.883-893
    • /
    • 2021
  • Clostridium difficile present in feces of food animals may contaminate their meats and act as a potential source of C. difficile infection (CDI) to humans. C. difficile resistance to antibiotics, its production of toxins and spores play major roles in the pathogenesis of CDI. This is the first study to evaluate C. difficile prevalence in retail raw animal meats, its antibiotics susceptibilities and toxigenic activities in Al-Jouf, Saudi Arabia. Totally, 240 meat samples were tested. C. difficile was identified by standard microbiological and biochemical methods. Vitek-2 compact system confirmed C. difficile isolates were 15/240 (6.3%). Toxins A/B were not detected by Xpect C. difficile toxin A/B tests. Although all isolates were susceptible to vancomycin and metronidazole, variable degrees of reduced susceptibilities to moxifloxacin, clindamycin or tetracycline antibiotics were detected by Epsilon tests. C. difficile strains with reduced susceptibility to antibiotics should be investigated. Variability between the worldwide reported C. difficile contamination levels could be due to absence of a gold standard procedure for its isolation. Establishment of a unified testing algorithm for C. difficile detection in food products is definitely essential to evaluate the inter-regional variation in its prevalence on national and international levels. Proper use of antimicrobials during animal husbandry is crucial to control the selective drug pressure on C. difficile strains associated with food animals. Investigating the protective or pathogenic potential of non-toxigenic C. difficile strains and the possibility of gene transfer from certain toxigenic/ antibiotics-resistant to non-toxigenic/antibiotics-sensitive strains, respectively, should be worthy of attention.

A study on Enterotoxigenic Escherichia coli (대장균의 장내 독소 생성 균주에 관한 연구)

  • 이영남
    • Korean Journal of Microbiology
    • /
    • v.16 no.4
    • /
    • pp.161-169
    • /
    • 1978
  • Escherichiae-like organisms were isolated from rectal specimens of 56 children who were either in preschool age or in elementary school. The isolated strains were subjected to tests to screen enteropathogens producing heat-labile enterotoxin and susceptibility test to various antibiotics by disc diffusion method on agar plates. Production of heat-labile enterotoxin by the strains was assyed in the sensitive and reproducible cultured adrenal tumor cell system. The assay was sterodogenesis of the cell in the presence of heat-labile enterotoxin. Among 56 strains, gave positive reaction in the test of toxin production. This meant that about 10% of the children population objected to the study harbored the toxigenic strain of enteropathogenes. Some of these toxigenic strains were resistant to the antibiotics employed in the test. This study suggested that considerable population in Korea may harbor entertoxigenic E. coli as a part of intestinal normal flora. The toxigenic strains which are resistant to antibiotics may bring issue of public health in the future.

  • PDF

Mycoflora and Mycotoxins of Cereal Grains in Delta, Egypt

  • Soliman, Hoda M.
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.183-190
    • /
    • 2003
  • Five cereal grains(wheat, barley, rice, maize and sorghum) were collected from three Egyptian provinces known to be grain producers(Daqahlia, Gharbia and Kafer el-Sheikh). Two species of Alternaria(A. raphani and A. tenusinae); two species of Aspergillus(A. flavus and A. niger); one species of Cunninghamella(C. elegans); one Dreschslera species(D. myakt); three Fusarium species(F. graminearum, F. moniliform and F. solani); one Rhizopus species(R. stolonifer) and two species of Penicillium(P. digitatum and P. notatum) were isolated from the grains. The densities of these fungi and their frequencies of occurrence have been investigated. All the fungal isolates were tested for the production of toxic metabolites in culture media and the percentages of toxigenic isolates were calculated. The biological assay of the toxigenic fungal isolates showed significant variations in toxigenic activity. Thin layer chromatography revealed that the most active isolate produces moniliformin in culture media. The effect of culture conditions on the production of moniliformin was studied.

Toxigenic Bacilli Associated with Food Poisoning

  • Oh, Mi-Hwa;Cox, Julian M.
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.594-603
    • /
    • 2009
  • The genus Bacillus includes a variety of diverse bacterial species, which are widespread throughout the environment due to their ubiquitous nature. A well-known member of the genus, Bacillus cereus, is a food poisoning bacterium causing both emetic and diarrhoeal disease. Other Bacillus species, particularly B. subtilis, B. licheniformis, B. pumilus, and B. thuringiensis, have also recently been recognized as causative agents of food poisoning. However, reviews and research pertaining to bacilli have focused on B. cereus. Here, we review the literature regarding the potentially toxigenic Bacillus species and the toxins produced that are associated with food poisoning.

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF

Spices Mycobiota and Mycotoxins Available in Saudi Arabia and Their Abilities to Inhibit Growth of Some Toxigenic Fungi

  • Bokhari, Fardos M.
    • Mycobiology
    • /
    • v.35 no.2
    • /
    • pp.47-53
    • /
    • 2007
  • The prevalence and population density of the mycobiota of 50 samples belonging to 10 kinds of spices (anise, black pepper, red pepper, black cumin, peppermint, cardamom, clove, cumin, ginger and marjoram) which collected from different places in Jeddah Governorate were studied. The natural occurrence of mycotoxins in those samples was also investigated. Fifteen genera and thirty-one species of fungi in addition to one species variety were isolated and identified during this study. The most common genera were Aspergillus, Penicillium and Fusarium. Aflatoxins ($12{\sim}40\;{\mu}g/kg$) were detected in the extract of 5 samples of each of anise seeds and black pepper fruits; three samples of black cumin seeds and on sample only of each of peppermint and marjoram leaves out of 5 samples tested of each. Sterigmatocystin ($15{\sim}20\;{\mu}g/kg$) was detected in some samples of red pepper, cumin and marjoram. The inhibitory effects of 10 kinds of powdered spices were tested against 3 toxigenic isolates of fungi (Aspergillus flavus, A. versicolor and Penicillium citrinum). Clove proved to be antimycotic compounds. It inhibited the growth of the tested toxigenic fungi. Black pepper, peppermint, cardamom, cumin and marjoram completely inhibited aflatoxins production, while black pepper and cardamom also completely inhibited sterigmatocystin production.