• Title/Summary/Keyword: toxic heavy metal

Search Result 272, Processing Time 0.027 seconds

The Adsorption Characteristics of Heavy Metals by Acrylic Fibers Treated with Hydroxylamine (II) - Properties of Cu(II) Adsorption and its Chelates - (하이드록실 아민으로 처리한 아크릴 섬유의 중금속 흡착특성 (II) -구리 (II)흡착과 그 키일레이트의 성질-)

  • Chin Young-gil;Choi Suk-chul
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.2 s.30
    • /
    • pp.128-136
    • /
    • 1989
  • In order to investigate a practical application of fibrous adsorbents to heavy metal ions, amidoxime fibers, as a particular class of solid chelate agents, were prepared by hydroxylamine treatment for acrylic fibers in a recipe of neutralization. Among the important problems from plant effluents are toxic concentrations of heavy metals such as copper. Accordingly, the properties of Cu (II) adsorption and its chelates were studied. The results obtained are as follows; The fibrous adsorbents have the property of increasing the swelling volumes by amidoximation. The adsorption of Cu (II) ion is characterized by an endothermic reaction, which is estimated as the plus values in the enthalpy change ($\delta$H=1.30 Kcal/mol. and 3.14 Kcal/mol.). The Cu (II) ions are adsorbed in the range of pH $3\~8$ and the maximum adsorptions are occurred about pH 8. Owing to the anions $(NO_3^-,\;Cl^-)$ of copper salts, amidoxime fibers form 1:1 and 2:1 (ligand: metal) chelating complexes with Cu (II). The nitrate anion chelates to amide I (NH) of amidoxime groups and the chlorine anion does to nitrosyl (NO). These effects relate to the crystallization of the complex and the thermal property.

  • PDF

Toxic Effects of Serpentine Soils on Plant Growth

  • Kim, Jeong-Myeong;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.327-331
    • /
    • 2008
  • Serpentine soils are distributed in a small area in Korea, and generally exhibit high contents of Ni, Cr, Fe, Mn, Co and Mg. We investigated the growth of woody plants and herbs in the Andong serpentine area, Korea. Pinus densiflora and P. rigida growing on serpentine soils have high contents of Fe, Mg, Ni and Co, with contents approximately twice as high as those of non-serpentine plants. Tree species on serpentine soil also had lower ratios of tree height/DBH than trees in a control area. In greenhouse culture experiments on two bodenvag herb species, Setaria viridis and Cymbopogon tortilis, the biomass of the plants was significantly affected by soil type but not by seed origins. After 66 days, the growth of S. viridis and C. tortilis seedlings was significantly inhibited in serpentine soil, and the dry weight of each species showed significant negative correlations with soil heavy metal contents (Ni, Co and Cr). These results suggest that the growth of plants was inhibited by properties of the serpentine soil, and in particular, their high heavy metal concentration, which induced dwarfing in woody plants and reduction of total plant biomass in herbs.

Heavy and Trace Metal Analysis of River Otter (Lutra lutra) Spraints from the Geoje Island (우리나라 거제지역에 서식하는 수달의 식이물 중금속 및 미량원소 분석에 대한 연구)

  • Cho Heesun;Lee Sang-Don
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.315-321
    • /
    • 2005
  • The population of river otter (Lutra lutra) has been declined most of the world due to hunting, habitat destruction and indirect or direct influences of eutrophication, acidification and toxic chemicals. This study is conducted to identify the population decline of river otter in Korea with relation to environmental pollution caused by accumulation of heavy and flared metals. The field survey was conducted during Jan~Dec, 2004 at a monthly basis by collecting spraints. A total of 228 spraints were collected and analysis was done by ICP-AES. The concentrations of fourteen metals (Cr, Zn, Cd, Pb, Ni, Fe, Co, Mn, Mg, Cu, Al, Ba Hg, As) have been determined. Annual concentrations of Cd $(1.38{\mu}g\;g^{-1}),\;Zn\;(599.06\;{\mu}g\;g^{-1}),\;Pb\;(5.54\;{\mu}g\;g^{-1})$ at Gucheon were higher than those of Yeonchocheon. Concentrations of $Cr\;(5.01{\mu}g\;g^{-1}),\;Ni\;(1.91{\mu}g\;g^{-1}),\;Co\;(0.25{\mu}g\;g^{-1})$ were higher at Yeonchocheon. Most metals in winter were significantly increased (P<0.05) as season progressed from spring to winter. $Pb\;(15.58{\mu}g\;g^{-1}),\;Cu\;(15.15{\mu}g\;g^{-1}),\;a;Guchoen\;and\;Cr\;(5.77{\mu}g\;g^{-1})$ at Yeonchocheon were high in the downstream of winter.

Interactive Toxic Effects of Heavy Metals and Diesel on Vibrio fischeri (발광박테리아(Vibrio fischeri)에 대한 중금속 및 디젤의 혼합 독성 영향)

  • Jung, Hyun;Park, Sookhyun;Hwang, Yu Sik
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.403-408
    • /
    • 2014
  • The toxicity of heavy metals (Zn, Pb) and diesel, in single and binary solution was investigated using the photobacterium Vibrio fischeri (Microtox test) as a test organism. In this experiment, the concentration of water soluble fraction of diesel was based on the total petroleum hydrocarbon (TPH). The toxicity of each single compound showed the following $EC_{50}$ (15min): Zn 1.90 mg/L, Pb 0.31 mg/L, TPH 2.09 mg/L. The observed toxicity of binary mixtures increased, depending on the concentration of the mixed substance. The effects were defined as synergistic, antagonistic, or additive, in accordance with the sign of difference between the predicted and observed toxicity at binary mixtures. The interactive effects between zinc and lead were synergistic, on the other hand, antagonistic and additive effects were found in each metal and TPH mixtures on the bioluminescence of V. fischeri.

Red Mud를 이용한 토양 및 슬러지내 중금속 제거 특성

  • 김이태;배우근;김우정;정원식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.73-77
    • /
    • 2003
  • Red mud is a waste material formed during the production of alumina when the bauxite ore is subjected to caustic leaching. It is a brick-red colored highly alkaline (pH 10-12) sludge containing mostly oxides of iron, aluminum, titanium, and silica. Red mud, due to its high aluminum, iron, and calcium contents, has been suggested as a cheap adsorbent for removal of toxic metals (e.g., As, Cr, Pb, Cd) as well as for water or wastewater treatment. The basic advantage of red mud is its versatility in application. This study was conducted to evaluate the effect of red mud on stabilization and fixation of heavy metals (such as Pb, Cu, C $r^{6+}$, Cd, Zn) contained in the Al-coating sludge and soil. The results showed that the concentration of heavy metals leached from the treated sludge and soil was low, meeting the regulatory permit level.

  • PDF

Evaluation of the Feasibility of Phytoremediation of Soils Contaminated with Cd, Pb and Zn using Sunflower, Corn and Castor plants

  • Chae, Mi Jin;Jung, Goo-Bok;Kang, Seong Soo;Kong, Myung Suk;Kim, Yoo Hak;Lee, Deog Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.491-495
    • /
    • 2014
  • Phytoremediation is a technology using plants and associated soil microbes to reduce the concentrations or toxic effects of contaminants in the environments. It is regarded as a cost-effective, efficient, eco-friendly, and solar-driven technology with good public acceptance. This study was conducted to find the plants accumulating heavy metals in soils contaminated with Cd and Pb. Experimental plots (plot size: $0.81m^2$) was artificially contaminated using a contaminated soil collected from a field in vicinity of Wondong mine (WD). Sunflower, corn and castor were tested for their potential to remove heavy metals from the contaminated soils. The results indicated that sunflower was most effective in accumulating heavy metals and thus remedying the soils among the three crops. Dry weight and heavy metal uptake of sunflower shoot differed with growth period. For example, the Cd content of shoots including leaf and stem were 0.31mg, 2.23 mg, and 0.96 mg per plot at 4, 8 and 12 weeks after planting in Cd4-WD treatment; in addition, the dry weight of the shoots in Cd8-WD treatment was reduced due to heavy metal toxicity. This experiment showed that sunflower absorbed Cd, Pb and Zn in their shoots up to 8 weeks of planting; thereafter heavy metals uptake was diminished. This implies that the efficiency of these plants in cleaning the contaminated soils may be high at the early stage of plant growth.

Optical Spectroscopic Analysis Techniques to Detect Elemental Profile of Human Teeth Dentine

  • Saifullah Jamali;Muhammad Aslam Khoso;Irfan Ali Sanjrani;Hussain Saleem;Tariq Ali Siyal;Muhammad Ashraf;Mansoor Ahmed Memon;Ghulam Murtaza;Zahid Hussain Arain;Zaheer Ahmed Ujjan;Muhammad Niaz Laghari;Samina Saleem;Nek M. Shaikh;Waseem A. Bhutto;Abdul Majid Soomro;Altaf H. Nizamani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.193-202
    • /
    • 2023
  • Numerous articles under the study and the examination of heavy metals in human teeth have been published in recent years. The heavy metal poisoning is a widespread issue emerged in toxicology area these days. It has been discovered that long-term exposure to heavy metals typically present in traces, in our everyday meals, drinking water, and in the environment as pollution causes heavy metal poisoning in human beings. Industrial effluents, Coal and Oil, as well as a variety of consumer items, such as cosmetics, can all cause this type of exposure. Teeth, which are often thought of as exoskeleton parts, store heavy metals with a high affinity and represent long-term exposure information. In this study, we have chosen and examined the sections of dentine instead, then examined the entire tooth. We have combined the work done on the examination of heavy metals in human teeth using several instrumental approaches e.g. "Optical Spectroscopic Techniques" to detect elemental profile of human teeth in the current study.

Comparison of Blood Metal Concentration in Ohjeok-san(Wuji-san) Treated Rats - Dose-Response Relationship and Mechanism - (오적산을 투여한 흰쥐의 혈액중 금속농도 비교에 관한 연구 - 용량-반응관계와 기전을 중심으로 -)

  • 이정렬;이선동
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.67-82
    • /
    • 2002
  • Objectives: In recent years, extensive focus has been laid on adulteration of herbal medicine with heavy metals. This may be mainly due to soil contamination by environmental pollution. The objective of this study is to identify the contents of various heavy metals in the blood from Ohjeok-san (Wuji-san) Decoction (OD) treated-rats. Methods: For this study, 13 kinds of metals including essential and heavy metals, i.e. A1, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se and Zn were analyzed by a slight modification of EP A methods and the following results are obtained. Results: 1. There was no significant difference between the OD-treated groups and control group in liver, kidney, bone, brain and weight, especially no significant difference at the 5th and 10th days in weight and the amount of food intake. 2. The amount of each metal analyzed in the blood were as follows; A1: 2.3~3.07 mg/l, As: 2.90~3.66 mg/l, Cd: 0~0.001 mg/l, Co: 0~0.01 mg/l, Cr: 0.40~043 mg/l, Cu: 0.93~1.88 mg/l, Fe: 414.35~464.46 mg/l, Hg: 0.01 mg/l, Mn: 0.10~0.17 mg/l, Ni: 0.01 mg/l, Pb: 0.03~012 mg/l, Se: 0.73 mg/l, Zn: 3.41~4.13 mg/l by groups, respectively. In control and experimental group, Experimental I and other experimental II, III, IV, and V groups, there were no significant differences. 3. The amount of non-toxic metals (A1, Co, Cu, Fe, Mn, Se, Zn) were $64.1{\pm}7.71{\;}mg/l$ in the control group and 60.70~67.58 mg/l in the experimental groups I, II, III, IV and V. The amount of Toxic metals (As, Cd, Cr, Ag, Pb) were $0.68{\pm}0.21{\;}mg/l$ in the control group and 0.57 ~ 0.66mg/l in the experimental groups. The total amount of metals were 32.35 mg/l in the control group and 30.48~34.12 mg/l in the test groups I, II, III, IV and V, respectively. Conclusions: There was no significant difference of metal concentration in the blood from the OD-treated-rats compared to those of the control group even if higher dosage (1~8 times the dosage for a person) of OD was administered. This may be mainly due to a decoction treatment which contains only supernatants filtered from the herb-mass after boiling. This indicates the legal limitation for metal concentration in herbal medicine must be applied according to different treatment methods of herbal medicine.

  • PDF

A Effect of Heavy Metal to Toxicity of Triclosan Focused on Vibrio fischeri Assay (Triclosan의 독성에 중금속이 미치는 영향 - V. fischeri Assay 관련 내용 중심으로 -)

  • Kim, Ji-Sung;Kim, Il-Ho;Lee, Woo-Mi;Lee, Hye-In;Kim, Seok-Gu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.153-161
    • /
    • 2014
  • The purpose of this study is to evaluate effect of heavy metals (i.e., $Cu^{2+}$, $Zn^{2+}$, $Cr^{6+}$, $Cd^{2+}$, $Hg^{2+}$, and $Pb^{2+}$) to toxicity of Triclosan as binary mixture. The individual toxicity and combined toxic effects of Triclosan with heavy metals were evaluated by Vibrio fischeri assay. In individual toxicity, the $Hg^{2+}$ was found to be most toxic followed by Triclosan, $Pb^{2+}$, $Cr^{6+}$, $Cu^{2+}$, $Zn^{2+}$, and $Cd^{2+}$, respectively. To evaluate combined toxic effect, correlation analysis of 'predicted value' calculated by Concentration addition (CA) model and Independent action (IA) model with 'experimental value' were performed based on the toxicity of individual compound. As a result, all of the combinations showed that IA model were more correlated with experimental value than CA model. On the basis of the median effect concentration of combination ($EC_{50mix}$) predicted by IA model, experimental $EC_{50mix}$ of Triclosan + Cu, Triclosan + Zn, Triclosan + Pb, Triclosan + Hg, Triclosan + Cd, and Triclosan + Cr were 191%, 226%, 138%, 137%, 209%, and 138% of $EC_{50mix}$ predicted by IA model, respectively, indicating that all of the combinations produced antagonistic effect.

Environmental Contamination and Bioavailability of Toxic Element around the Daduk Mine Area, Korea (다덕광산 주변지역에서의 독성원소들의 환경오염 및 인체흡수도)

  • ;Ben A Klinck;Yvette Moore
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.273-282
    • /
    • 2000
  • In order to investigate the extent and degree of arsenic and heavy metal contamination and the bioavailability of toxic elements around the abandoned mine in Korea, an environmental geochemical survey was undertaken in the Daduk mine. After appropriate preparation, tailings, soil, stream sediment, crop plant and fingernail samples were analysed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Elevated levels of 8,782 mg/kg As, 8.3 mg/kg Cd, 489 mg/kg Cu, 3,638 mg/kg Pb and 919 mg/kg Zn were found in tailings from the Daduk mine. These significant concentrations can impact on soils and sediments around the tailing ponds. Mean concentrations of As, Cd, Pb, Cu and Zn in soils are significantly higher than those in world average soil, especially for As and Pb. Element concentrations in sediments decrease with distance from the tailing ponds due to a dilution effect by the mixing of uncontaminated sediments. Arsenic and Cd are elevated in rice grains and stalks, and Cu and Zn concentrations in chinese cabbage, sesame and bean leaves are higher than the upper limit values for normal plant. Arsenic concentration in fingernails of farmers are higher than the normal level with a maximum value of 1.5 mg/kg. The post-ingestion bioavailability of toxic heavy metals in some paddy and farmland soils has been also investigated using the SBET (simple bioavailability extract test) method. The method utilises synthetic leaching fluids closelyanalogous to those of the human stomach. The quantities of As, Cd, Cu, Pb and Zn extracted from paddy soils after 1 hour indicated 15.9, 65.4, 46.2, 39.4 and 29.4% bioavailability, respectively and for farmland soils, 12.4, 26.0, 31.2, 29.3 and 19.4% bioavailability, respectively. The results of the SBET indicate that regular ingestion of soils by the local population could pose a potential health threat due to long-term toxic element exposure.

  • PDF