• Title/Summary/Keyword: toxic digestive gland homogenate

Search Result 2, Processing Time 0.014 seconds

Reestablishment of Approval Toxin Amount in Paralytic Shellfish Poison-Infested Shellfish 3. Thermal Resistance of Paralytic Shellfish Poison (마비성 패류독 허용기준치 재설정을 위한 연구 3. 마비성 패류독의 내열성)

  • 신일식;김영만
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.143-148
    • /
    • 1998
  • The purpose of this study was to determine the kinetics of paralytic shellfish poison (PSP) destruction at various temperature. The toxic digestive gland homogenate of blue mussel (Mytilus edulis), PSP crude toxin, gonyautoxin group and saxitoxin group were heated at temperature ranging from 90 to $120^{\circ}C$, and then the toxicities were measured in samples heated for various time intervals. The rate constant (k) of the toxic digestive gland homogenate, PSP crude toxin, gonyautoxin group and saxitoxin group were $3.28{\times}10^{-2},\;1.20{\times}10^{-2},\;5.88{\times}10^{-2}\;and\;2.58{\times}10^{-2}\;at\;120^{\circ}C$, respectively. The decimal reduction time (D-value) of the toxic digestive gland homogenate, PSP crude toxin, gonyautoxin group and saxitoxin group were 70, 192, 39 and 89 at $120^{\circ}C$, respectively. These results indicate that PSP crude toxin is most heat-stable of 4 types of PSP toxins and PSP toxin are more heat-stable than food poisoning bacteria and spores. The retorting condition to reduce PSP toxicity below quarantine limit ($80\;\mu\textrm{g}/100\;g$ in Korea and America, 4 MU/g in Japan) could be calculated by rate constant. For example, the digestive gland homogenate having a initial toxicity of $200\;\mu\textrm{g}/100\;g$ could have toxicity below quarantine limit when heated at $90^{\circ}C$ for 129 min., $100^{\circ}C$ for 82 min., $110^{\circ}C$ for 48 min. and $120^{\circ}C$ for 28 min. These results suggest that commercial retorting condition ($115^{\circ}C$ for 70 min) in Korea is enough to reduce toxicity below quarantine limit from initial toxicity of $200\;\mu\textrm{g}/100\;g$. From these results, the quarantine limit of PSP-infested shellfish for canning can be level up to raw score of $200\;\mu\textrm{g}/100\;g$.

  • PDF

Change of Paralytic Shellfish Poison Toxicity by the Treatment Method of Sea Mussel, Mytilus edulis (처리조건에 따른 진주담치 중 마비성 패류독의 변화)

  • 김지회;김성준;장동석;이명숙;허성호
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 1990
  • Paralytic Shellfish Poison (PSP) is mainly produced by marine dinoflagellates such as Protogonyaulax sp. and Pyrodinium sp.. The PSP was known to be accumulated in digestive gland of shellfish as result of feeding toxic dinoflagellates. PSP illness when occurs when one eats PSP intoxicated shellfish. Therefore PSP is becoming as serious problem in food hygiene and shellfish cultivation industry. The purpose of this study was to develop detoxification method for utilization of PSP intoxicated sea mussel and prevent from PSP illness. The PSP was extracted with 0.1 N HCl solution from the submitted sea mussel, then the toxicity was measured by mouse assay according to Official Methods of Analysis of the Association of Official Analytical Chemists. No detoxification effect was observed by adding extracted juice of garlic and ginger. When the sea mussel homogenate was heated at various temperatures, the PSP toxicity was not changed significantly at below $70^{\circ}C$ for 60 minutes but it was decreased as the heating temperature was increased. For example, when the sea mussel homogenate was heated at 100, $121^{\circ}C$ for 10 minutes, the toxicity was decreased about 67 and 90%, respectively. When the sea mussel containing 645 $\mu$g PSP per 100g of edible meat was processed according to general shellfish canning procedure, the toxicity was decreased as the level of PSP undetected by mouse assay.

  • PDF