• Title/Summary/Keyword: towers

Search Result 546, Processing Time 0.029 seconds

Construction stage analysis of fatih sultan mehmet suspension bridge

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.489-505
    • /
    • 2012
  • In this study, it is aim to perform the construction stage analysis of suspension bridges using time dependent material properties. Fatih Sultan Mehmet Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element models of the bridge are modelled using SAP2000 program considering project drawing. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Because of the fact that the bridge has steel structural system, only prestressing steel relaxation is considered as time dependent material properties. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

Analysis of Loading Rate Capacity of Plate Anchor in Sand (사질토 지반에 설치된 판앵커의 인발속도에 따른 저항력 분석)

  • Ryu, Dong-Man;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.31-39
    • /
    • 2012
  • Anchors are primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure. These outwardly directed loads are transmitted to the soil at a greater depth by the anchors. Buried anchors have been used for thousands of years to stabilize structures. Nowadays, various types of earth anchors are used for the uplift resistance of transmission towers, utility poles, submerged pipelines, and tunnels. Anchors are also used for the tieback resistance of earth-retaining structures, waterfront structures, at bends in pressure pipelines, and when it is necessary to control thermal stress. In this research we analyzed the uplift behavior of plate anchors in sand using a laboratory experiment to estimate the uplift behavior of plate anchors under various conditions. To achieve the research purpose, the uplift resistance and displacement characteristics of plate anchors caused by the embedment ratio, plate diameter, and loading rate were studied, compared, and analyzed in various cases.

Study on Application of Reinforcement Device to Provide Greater Dynamic Stability for Power Transmission Towers and its Effect

  • Yang, Kyeong-hyeon;Bae, Choon-hee;Jeong, Nam-geun;Kim, Doo-young;Kim, Sung-min;Jang, Yong-hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.33-41
    • /
    • 2016
  • To verify that the friction damper used to high buildings as a kind of control technology of wind vibration can reduce dynamic behaviors of PTTs effectively, slip dampers in this paper are proposed to absorb the energy through relatively frictional movement of slip dampers applied to main post of a PTT (Power Transmission Tower) when dynamic displacement of a PTT occurs. The result of dynamic analysis is presented to determine the capacity of the damper system by controlling damping ratio on the resonance condition. It is observed that by installing slip dampers at a PTT the strain amplitudes of the main post caused by wind load are effectively reduced. Therefore it is shown that the proposed damper satisfies the strengthened wind-load design standards, and its efficacy was also validated experimentally by field testing.

Ultimate Strength Interaction of Steel Tubular T-Joint Subjected to Concurrent Action of Compression and Bending (압축과 휨을 동시에 받는 강관 T조인트 극한강도 상호작용)

  • Kim, Kyung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.298-303
    • /
    • 2016
  • Owing to the advantages of reduced weight and wind effect, the space-framed towers that consist of vertical and horizontal members of circular hollow tubular sections have been adopted widely for various purposes. It is critical to guarantee the strengths of tubular joints where vertical and horizontal members are connected structurally to make the entire space-framed system behave as a single tower structure. In this study, a strength evaluation was conducted for T-type tubular joints subjected to the concurrent action of compression and bending. Three of the available design codes, i.e., AISC, Eurocode 3, ISO 19902 were investigated and a design equation was suggested for an ultimate strength interaction between the axial force and bending moment based on nonlinear finite element analyses by selecting the slenderness ratios at the joints as major parameters.

A Study on the Voltage Upgrading of Transmission Lines using Polymer Insulation Arm (폴리머 절연암을 이용한 송전선로 전압 승압에 관한 연구)

  • Lee, Won-Kyo;Lee, Jung-Won;Kang, Yeon-Woog;Lee, Dong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.870-878
    • /
    • 2009
  • The large increase in the use of electricity has resulted in an ever-growing electric power demand. It has created the need for the construction of power transmission facility located close to the load centers and it also has to require wide right-of-way and large lots, that are not always available, for especially the installation of the towers. The difficulties in acquiring right-of-way have put pressure on energy companies to either upgrade a line on an existing right-of-way to higher voltage or build a new line on a narrow right-of-way. This paper presents the design of a compact tower with polymer Insulation arm, in order to reduce the separation between phases. the compact tower can be built on a narrow right-of-way. the compact tower can be designed based on 345 kV Tower regarding electrical clearances and right of way, therefore the conventional 154 kV Tower can be upgrading transmission line voltages have moved to 345 kV levels.

A Study of the Slim Design of Overhead Transmission Tower (가공송전철탑 경량화 설계에 관한 연구)

  • Lee, Jung-Won;Lee, Won-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.560-565
    • /
    • 2010
  • This paper presents the design factor of an overhead transmission tower structure in order to reduce the tower weight. The behaviour of transmission tower structures are affected by the horizontal angle of the tower structure, the equivalent wind pressure group, the slope of the main post of the tower, the separation of the internode and the use of high-strength materials in their construction. Tower weight can be reduced by approximately 30% reduce weight by means of optimal design based on a consideration of all the above factors. In addition, the design of the foundation of the tower with the shear key installation to increase horizontal support together with a modified angle of inclination to the ground can reduce by about 37% the amount of concrete used during construction. The area of ground disturbed by the construction of the tower foundation can thus be reduced by approximately 33%. Therefore it is possible to build an environmently-friendly T/L tower with the mechanical properties of existing towers.

Chemical Constituents of the Moss Hylocomium splendens

  • Kang, Shin-Jung;Jovel, Eduardo;Hong, Seong-Su;Hwang, Bang-Yeon;Liu, Patty;Lee, Meng-Hsin;Lee, Meng-Chun;Lee, Kyung-Soon;Towers, George Hugh Neil
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.394-397
    • /
    • 2007
  • Investigation of the chemical constituents of the dichloromethane extract from the moss Hylocomium splendens has led to the isolation of $5{\alpha},8{\alpha}$-epidioxy-24(S)-ethylcholesta-6,22-dien-$3{\beta}$-ol (1), diploptene (2), ${\beta}-sitosterol$ (3), and 1-hexacosanol (4). The chemical structures of 1 - 4 were established by spectroscopic methods including extensive 1D and 2D NMR analysis. This is the first isolation of compound 1 from the mosses, although it has been isolated from marine sponge.

Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns

  • Ren, Qing-Xin;Hou, Chao;Lam, Dennis;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.667-686
    • /
    • 2014
  • Tapered concrete filled double skin steel tubular (CFDST) columns have been used in China for structures such as electricity transmission towers. In practice, the bearing capacity related to the connection details on the top of the column is not fully understood. In this paper, the experimental behaviour of tapered CFDST stub columns subjected to axial partial compression is reported, sixteen specimens with top endplate and ten specimens without top endplate were tested. The test parameters included: (1) tapered angle, (2) top endplate thickness, and (3) partial compression area ratio. Test results show that the tapered CFDST stub columns under axial partial compression behaved in a ductile manner. The axial partial compressive behaviour and the failure modes of the tapered CFDST stub columns were significantly influenced by the parameters investigated. Finally, a simple formula for predicting the cross-sectional capacity of the tapered CFDST sections under axial partial compression is proposed.

Measurement and Analysis of Energy Consumption of HVAC Equipment of a Research Building (연구용 건물의 열원 및 공조기기의 에너지 소비량 측정 및 분석)

  • Kim Seong-Sil;Kim Youngil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.914-922
    • /
    • 2004
  • In this study, measurement and analysis of energy consumption of a research building have been conducted. The energy audit procedure includes monitoring of electricity and LNG consumption over a period of three yews from 2000 to 2002. Data acquisition system for collecting energy consumption data of HVAC equipment such as chillers, fan filter units, AHUs, cooling towers, boilers, pumps, fan coil units, air compressors and etc. has been installed in a building located in Seoul. Data collected at an interval of 1 minute are analyzed for studying the energy consumption pattern of a research building. Percentage of energy consumption of all HVAC equipment is $51.0\%$ in 2000, $55.4\%$ in 2001, and $62.3\%$ in 2002, respectively. Electricity consumption of chillers accounts for $17.6\%$ of the total energy consumption, which is the largest. Annual energy consumption-rate per unit area is $840.5Mcal/m^2{\cdot}y$ in 2000, $1,064.8Mcal/m^2{\cdot}y$ in 2001, and $1,393.0Mcal/m^2{\cdot}y$ year 2002, respectively.

An Experimental Study on the Effects of Contact Angle on a Falling Liquid Film (접촉각이 유하액막 특성에 미치는 영향에 관한 실험적 연구)

  • Kim, Kyung-Hee;Kang, Byung-Ha;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.867-873
    • /
    • 2006
  • Vertical falling liquid film is extensively used in heat and mass transfer processes of many applications, such as evaporative coolers, cooling towers, and absorption chillers. In such cases, it is required that the falling film spreads widely in the surface forming thin liquid film to enlarge contact surface. An addition of surface active agent to a falling liquid film or hydrophilic surface treatment affects the fluid physical properties of the film. Surfactant addition not only decreases contact angle between the liquid and solid surface but also changes the surface from hydrophobicity to hydrophilicity. In this study, the effects of contact angle on falling film characteristics over a vertical surface have been investigated experimentally. The contact angle is varied either by an addition of surfactant to the liquid or by hydrophilic surface treatment. It is found that the wetted area is increased and film thickness is decreased by the hydrophilic treatment as compared with those of other surfaces. With this hydrophilic treatment, the falling liquid film spreads out widely in the surface. As surfactant concentration is increased, wetted area is also increased and the film thickness is substantially decreased.