• Title/Summary/Keyword: tower yarder

Search Result 22, Processing Time 0.023 seconds

Analysis of Policy and Status of the Logging Operation System for Forest Biomass (산림바이오매스 이용을 위한 임목수확작업시스템의 현황 및 정책 분석)

  • Park, Sang-Jun
    • Journal of Environmental Science International
    • /
    • v.29 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • This study was conducted to analyze the current situation of the logging operation system and to suggest an effective policy plan to secure important raw materials for the use of forest biomass. The dissemination of forestry mechanization and the establishment of the logging operation are important tasks to establish a system and reduce costs of timber production by increasing the use of forest biomass; this includes increasing the supply of timber for domestic products and increasing the production of wood chips and wood pellets. In particular, the efficiency of steep-slopes catenary system machinery for yarding such as tower-yarder and swing-yarder should be urgently supplied to cope with forest production and supply of forest biomass energy resources. In addition, it is necessary to continuously promote the dissemination of high-performance forestry machinery as is being done in Japan. At the same time, instead of distributing or retaining the spread of forestry machinery to the state and local governments, it is necessary to distribute timber production work centered on forest cooperatives or private timber producers to be carried out by wood producers, forest cooperatives and individuals.

Development of a Mobile Tower-yarder with Tractor (I) - Design and Manufacture - (트랙터부착형 타워집재기 개발(I) - 설계 및 제작-)

  • Park, Sang-Jun;Kim, Bo-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This study was conducted to develop a mobile tower-yarder with tractor for agriculture and forestry that is the efficient yarder in steep terrains, thinning operation and small scale logging operation. It was designed and manufactured that the power source of tower-yarder is equiped three hydraulic pump connected to PTO of tractor, and three hydraulic pump is used to operate the four motor for drum, the cylinder for clutch of interlocker, the cylinder for tower expanding and the out-rigger cylinder. It was to adopt the running skyline system and the inter-lock function, and to equip the double capstan drum, the storage drum and the clutch for interlock in the development of tower-yarder. It was to develop the tower-yarder which the winch torque of double-capstan drum, the traction force of double-capstan drum, the number of rotation of double-capstan drum and the line speed is $191kg{\cdot}m$, 1,910 kgf, 220.5 rpm and 138.5 m/min, respectively. And it was known that the optimum flange diameter of the main and haulback storage drum is about 360 mm and about 460 mm in order to storage the main line length of 250m and the haulback line length of 450 m. The carriage was made to adopt the running skyline system and to equip the lock function in order to the convenience of chocking and the fall down preventing of tree. It was provided to develop the wire remote controller for the inter-lock function, the convenience of control and the efficiency of yarding. In development process, this tower-yarder was attached the 3-point linkage hitch equipment and the tire wheel for the traction and moving of tower-yarder. Also, it was equipped that the out-rigger and the guy line in order to raise the safety and efficiency of yarding of tower-yarder.

Harvesting Cost and Productive of Tree-Length Thinning in a Pinus densiflora Stand Using the Tower Yarder (HAM300)

  • Cho, Minjae;Cho, Koohyun;Jeong, Eungjin;Lee, Jun;Choi, Byoungkoo;Han, Sangkyun;Cha, Dusong
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.189-195
    • /
    • 2016
  • Logging equipment and method have a major influence on harvesting productivity and cost. This study investigated the productivity and operational costs of tree-length cable yarding system using HAM300, a domestically developed tower yarder. We tested HAM300 for thinning operation in Pinus densiflora stands at Gangreung, Gangwon-do on April, 2014. To assess the productivity we conducted time study for each stage of the operation. When the average time/cycle was examined for each stage of the operation, the longest was for yarding (241 sec), followed by delimbing (237 sec), felling (153 sec), and processing (103 sec). Furthermore, productivity for felling was $8.6m^3/hr$, followed by delimbing ($5.1m^3/hr$), yarding ($3.5m^3/hr$), and processing ($8.1m^3/hr$). The total cost for the tree-length logging system was $58,446won/m^3$, of which the majority was incurred by the yarding cost at $46,217won/m^3$ (79.3%), whereas the lowest cost was for felling at $2,359won/m^3$ (4.1%). We suggest that it is necessary to foster specialized operators and provide training in operating the tower yarder thereby implementing efficient harvesting system resulting from low-cost yarding.

Analyzing the Comparative Economic Efficiency of Short-wood Woodgrab Logging and Whole-tree Cable Logging Operations (Woodgrab을 이용한 단목집재와 가선집재방식에 의한 전목집재의 경제적 효율성 비교분석)

  • Seol, Ara;Han, Hee;Jung, Yoonkoo;Chung, Hyejean;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.2
    • /
    • pp.231-237
    • /
    • 2016
  • This research was conducted in order to examine whether the Woodgrab short-wood logging method, most widely used logging method in Korea, is more favorable than other logging methods in terms of productivity and profitability. For the comparative purposes, whole-tree logging methods with cable yarding system using a swing yarder and a tower yarder were evaluated. The productivity and the profitability of the logging operations by the machine types on a L. kaempferi stand were estimated by simulating logging processes based on bucking patterns and the results were compared. As a result, the Woodgrab short-wood logging system showed the most favorable results in terms of skidding productivity and operating cost. On the contrary, the system was the least profitable among the three logging methods. Main reason is that while the system may be beneficial in terms of operation productivity, it is restricted to produce only short logs mainly for low quality raw materials such as pulp, bolts, etc. which are sold at cheap prices.

Productivity, Cost, and Optimal Forest Road Network Density of Tree-length Yarding Operations with Tower Yarder (타워야더를 이용한 전간집재작업의 생산성 및 비용과 적정 노망밀도 분석)

  • Kim, Min-Kyu;Baek, Seung-An;Cho, Koo-Hyun;Jung, Do-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.300-309
    • /
    • 2017
  • The productivity, cost, and optimal forest road network density for tree-length yarding with K301-4 and HAM300 tower yarders were analyzed. The results showed that productivity decreased as the yarding distance increased. The productivity of the K301-4 was greater than that of the HAM300 as the maximum yarding distance was longer than 34 m. This difference increased as the load volume increased. As the K301-4 yarder had a higher purchase price and it took more time to set up compared to the HAM300, the HAM300 was cost effective. Therefore, in oder to introduce tower yarders to reduce operational cost, it is effective to increase the load volume during operations and to utilize the road network repeatedly for a long period.

Comparison of Harvesting Productivity and Cost of Cable Yarding Systems (가선집재작업에서의 작업 생산성 및 비용 분석)

  • Han, Won Sung;Han, Han-Sup;Kim, Nam-Hun;Cha, Du Song;Cho, Koo Hyun;Min, Do Hong;Kwon, Ki Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.87-97
    • /
    • 2014
  • This study was conducted to provide field-based harvesting study information which can be used to select an optimal cable system for certain work conditions on steep grounds (> $20^{\circ}$ ground slope) in Korea. To accomplish this study objectives, we evaluated three cable yarding systems (RME-300T tower-yarder, Chuncheon tower-yarder, FARMI tractor winch) working in typical work conditions for their yarding productivity and operational efficiency. Those yarders are commonly used for removing logs or trees on steep grounds in Korea. Under the same work conditions (average DBH of tree to be cut, 20 cm; yarding distance, 60 m; lateral yarding distance, 10 m; and machine utilization rate, 70%), the average productivities were $33.04m^3$/day, $38.47m^3$/day, and $14.17m^3$/day for RME-300T, Chuncheon tower-yarder, and FARMI, respectively. Our standardized cost comparison study also showed that the yarding cost was highest at $37,835won/m^3$ with FARMI, followed by RME-300T at $25,105won/m^3$ for the same work conditions. We found the lowest yarding cost with the Chuncheon tower-yarder at $20,520won/m^3$ which was resulted primarily from high yarding productivity at the yarding distance (60 m). Our analysis suggested that a small machine such as FARMI could be a low-cost yarding machine option for a cable yarding job with a short yarding distance (40 m or less). The Chuncheon tower-yarder is well suited for a mid-range yarding distance job in Korea, ranged between 40 to 140 m. If yarding distance were longer than 140 m, the RME-300T tower yarder appears to be most cost-effective.

Traction Performance Improvement Study on a Small-scale Tower Yarder Attached to a Farm Tractor (농업용 트랙터 기반 소형 타워야더의 견인 성능 개선에 관한 연구)

  • Paik, Seung Ho;Choi, Yun-Sung;Cho, Min-Jae;Mun, Ho-Seong;Han, Sang-Kyun;Kim, Dae-Hyun;Oh, Jae-Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.562-573
    • /
    • 2019
  • In a cable yarding system, a small-scale tower yarder attached to a farm tractor wasdeveloped and used for small-diameter tree harvesting operations. Based on this design, improvement of traction performance was required for medium- and large-diameter tree harvesting operations. In this study, the mechanical transmission employed for the tower yarder was modified into ahydro-mechanical transmission system. Maximum traction forces, including tractor engine speed and hydraulic power pressure, were investigated, and comparisons were made between the mechanical and hydro-mechanical transmission systems. Six tractor engine speeds (1,200, 1,400, 1,600, 1,800, 2,000, and 2,200) and three levels of power transmission mechanism pressure (4.9, 6.9, and 8.8 MPa) were investigated in the two different transmission systems. Results showed a maximum traction force of 15,146.6 N at an engine rotation speed of 757 rpm in the current mechanical transmission system, and 36,140.0 N at anengine rotation speed of 1,575 rpm in the modified hydro-mechanical transmission system. The maximum traction forces for the hydro-mechanical transmission were 2.4 times greater than those of the mechanical transmission, and may therefore be applicable to medium and large-diameter tree harvesting operations. Thus,as a modified version of the conventional transmission system, the new hydro-mechanical transmission system may be cost-effective for use in large-scale cable yarding operations. In the future, however, it will be necessary to investigate problems that may arise from field application tests.

An Analysis of the Yarding Productivity and Cost in Forest Tending Operation (숲가꾸기 작업에서의 산물수집 공정 및 비용 분석)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.625-632
    • /
    • 2010
  • This study was carried out to analyze the yarding productivity and cost of the man-power operation by plastic chute, the yarding operation by yarder attached in tractor (Chuncheon Tower-yarder) and yarding operation by Tower-yarder (RME-300T) in forest tending operation. As result of average yarding timber volume was 0.67 $m^3$, 3.8 $m^3$ and 7.3 $m^3$ per day and man, respectively. And, when an yarding timber volume was 60 $m^3$/ha, the total yarding time including setting up and dismantling time of the plastic chute and yarding line was 20 days and 2 hours, 7 days and 1 hours and 21 minutes, 3 days and 4 hours and 27 minutes, respectively. The operation costs were 104,448 won/$m^3$, 29,968 won/$m^3$ and 23,032 won/$m^3$, respectively. And, when yarding timber volume was 60 $m^3$/ha, the total operation cost including setting up and dismantling time of the plastic chute and yarding line was 7,429,173 won/ha, 2,431,573 won/ha and 1,610,672 won/ha, respectively.

An Analysis of the Operational Productivity and Cost for the Utilization of Forest-biomass(I) - the Operational time and Productivity - (산림바이오매스 이용을 위한 산림작업 공정 및 비용 분석(I) -작업시간 및 공정 -)

  • Mun, Ho-Seong;Cho, Koo-Hyun;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.583-592
    • /
    • 2014
  • This study was carried out to investigate the operational time and productivity of logging operation by chain saw, yarder attached on tractor, tower-yarder, mini-truck, mini-forwarder, and chipping operations by mini-chipper, large-chipper in order to develop the efficient logging operation system for utilization of forest-biomass. As a result, the average felling and bucking time using chain saw at the site 1 and 2 was observed to be 182.7 sec/cycle and 518.5 sec/cycle respectively. The average yarding time was 202.5 sec/cycle using yarder attached on tractor and 295.1 sec/cycle using tower-yarder. The average forwarding time was 2,073 sec/cycle using mini-truck and 2,248.4 sec/cycle using mini-forwarder. The operational time of felling and bucking using chain-saw can be delayed according to the direction of fallen trees. The selection of felling direction is very important to yarding operation because the direction between width-yarding and felling are interrelated. Productivity can be improved through educating and training operators in the yarding operations. Mini-forwarder is needed to use because of higher productivity and lower cost than mini-truck. The operational productivity of felling and bucking by chain saw was $66.96m^3/man{\cdot}day$ and $43.86m^3/man{\cdot}day$ at site 1 and 2 respectively. The yarding productivity was $5.68m^3/man{\cdot}day$ by yarder attached on tractor, $10.74m^3/man{\cdot}day$ by tower-yarder. The forwarding productivity was $21.29m^3/man{\cdot}day$ by mini-truck, $28.57m^3/man{\cdot}day$ by mini-forwarder. The chipping productivity was $4.42m^3/man{\cdot}day$ by mini-chipper, $21.87m^3/man{\cdot}day$ by large-chipper.

An Analysis of the Operational Time and Productivity in Whole-tree and Cut-to-Length Logging Operation System (전목 및 단목 집재작업시스템에서 작업시간 및 공정 분석)

  • Kim, Min-Kyu;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.344-355
    • /
    • 2012
  • This study was conducted to analyze on the operational time and productivities of logging operations in whole-tree logging operation system by tower-yarder and swing-yarder, and in cut-to-length logging operation system by excavator with grapple in order to establish the efficient logging operation system and to spread logging operation technique. In the analysis of operational time, in case of whole-tree logging operation system, the felling time was 46.6 sec/cycle by chain saw, the yarding time was 480.6 sec/cycle by tower-yarder, the yarding time was 287.4 sec/cycle by swing-yarder and the bucking time was 155.14 sec/cycle by chain saw. In case of the cut-to-length logging operation system, the felling and bucking time was 225.65 sec/cycle by chain saw, the cut-to-length extraction time was 4,972 sec/cycle by excavator with grapple, the branches and leaves extraction time was 3,143 sec/cycle by excavator with grapple. The forwarding time was 4,688 sec/cycle by wheel type mini-forwarder, the forwarding time was 2,118 sec/cycle by excavator with grapple and small forwarding vehicle. In the analysis of operational productivities, in case of whole-tree logging operation system, the average felling performance was $57.89m^3/day$ by chain saw, the average yarding performance was $20.3m^3/day$ by tower-yarder, $31.55m^3/day$ by swing-yarder respectively, the average bucking performance was $20.3m^3/day$ by chain saw. In case of the cut-to-length logging operation system, the average felling and bucking performance was $11.96m^3/day$ by chain saw, the average cut-to-length extraction performance was $34.75m^3/day$ by excavator with grapple, the average branches and leaves extraction performance was $37.66m^3/day$ by excavator with grapple, the average length of operation road construction was 73.8 m/day by excavator with grapple. The average forwarding performance by wheel type mini-forwarder and the average forwarding performance by excavator with grapple and small forwarding vehicle was $15.73m^3/day$ and $65.03m^3/day$, respectively.