• 제목/요약/키워드: tower

검색결과 2,245건 처리시간 0.029초

지하역사 실내형 냉각탑 성능개선 연구 (A study on an improvement of indoor cooling tower efficiency)

  • 배성준;황선호;신창헌;표수철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1726-1735
    • /
    • 2008
  • Seoulmetro has operated the air cooling equipment for 57 stations to improve services focused on our customers who use Seoulmetro during the summer season and has established every year. However, a new set of problems has arisen with the cooling tower to support a heat exchange of cooling water. The most important matter is loss of efficiency in the cooling tower. The leading cause of this problem is that we use an indoor type. As the cooling tower room is located in the underground of the city because of the residents near the station. Therefore It is difficult to establish the cooling tower on the ground. But it is unsuitable for the location requirements of the underground type because it has a limited space to set up the air cooling equipment, for example, the cooling tower and a ventilating opening. As a result of such an unfavorable condition, the cooling tower doesn't work efficiently and the warmth of cooling water because of insufficiency of a heat exchange and a refrigerator's technical obstacle such as a high-temperature and a high-pressure has arisen. To prevent this situation, the operator tend to reduce refrigerant. Accordingly, the efficiency of the air conditioning is getting lower and lower. Study wishes to analyze the matter to improve indoor cooling tower efficiency and recommend a best practice for a person who manage the establishment.

  • PDF

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.

Energy Saving with Conversion Speed Drive of Cooling Tower Fans

  • Burapanonthachai, Araya;Chaikla, Amphawan;Trisuwannawat, Thanit;Julsereewong, Prasit;Chansangsuk, Dumri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1017-1022
    • /
    • 2004
  • This paper presents the conversion speed drive of the cooling tower fans from constant to variable speed. The speed of fan is adjusted using variable speed drives. Since the ambient temperature of cooling tower is varied seasonally, an economic evaluation was performed to determine the potential annual savings. The performances of the proposed technique were observed using cooling tower fans of chemical plant in Thailand as an illustrative case study. The experimental results demonstrating the energy savings fork cooling process and some economic benefits are obtained.

  • PDF

관제탑 형상을 고려한 부유식 해상공항의 유탄성 운동 (Hydroelastic Responses of the Floating Airport Considering the Shape for Control Tower)

  • 이호영;곽영기;박종환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.196-201
    • /
    • 2001
  • Very Large Floating Structures have been planned for effective utilization of ocean space in recent years. The VLFS usually has a control tower to guide airplane securely. This paper present an effective method for calculating the wave induced hydroelastic responses of VLFS considering the effect of control tower-shapes. The source and dipole distribution method is used to calculate the hydrodynamic loads and equation of motion is derived by considering the static and dynamic coupling effects from different segments of the plate. The rigidity matrix for VLFS is formulated by finite element method using a plate theory. The calculated results for VLFS with a control tower are compared with those for VLFS without a control tower.

  • PDF

Upwind형 수평축 풍력발전기의 타워 영향에 의한 블레이드 공력 성능 및 하중 변화에 대한 고찰 (Effect of interaction between blade and tower in upwind type HAWT on blade aerodynamic performance and load)

  • 김호건;신형기;박지웅;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.261-264
    • /
    • 2006
  • This paper describes the effects to wind turbine blade aerodynamics due to interaction between blade and tower on upwind type HAWT. In order to analyze effects of blade-tower interact ion, the analyst s program WINFAS which is based on VLM(Vortex Lattice Method), Free wake and FVE model is used. In this study, the changes of wind turbine blade aerodynamics caused by blade-tower interact ion are Investigated with various parameters windshear, yaw error, TSR and tower diameter.

  • PDF

LNG 운반선용 펌프타워의 구조해석 프로그램 개발에 관한 연구 (A Study on Development of Structural Analysis Program og LNG Pump Tower)

  • 이강수;손충렬;원종범
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.881-888
    • /
    • 2006
  • The purpose of this study is to develop a structural. analysis system of LNG pump tower structure. The system affords to build optimized finite element model and procedure of the pump tower structure. The pump tower structure is one of the most important components of LNG (liquefied natural gas) carriers. The pump tower structure is subject to sloshing load of LNG induced by ship motion depending on filling ratio. Three types of loading components, which are thermal, inertia and self-gravity are considered in the analysis. All these design and analysis procedures are embedded in to the analysis system successfully.

  • PDF

풍력타워용 부스닥트 포설시스템 개발 (On Installation of Bus Trunk System for Wind Tower)

  • 이준근;김봉석;박성희;안형준;이희남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.330-335
    • /
    • 2012
  • A Bus Trunk System for Wind Tower is introduced. A marine cable has been widely used in wind tower or other offshore structure. However, as the electric load capacity is getting increased, the large number of cable lines should be used to cover such a huge amount of electric capacities, which makes the installation make quite difficult due to the heavy weight and volume of the present cables. On the other hand, by using a single bus trunk system line, the power capacity amount of 16 number of cable can be delivered with significant compactness. However, unlike flexible cable, the bus trunk is relatively stiff which could arise resonance phenomenon in the operating condition of wind tower, therefore, the vibration characteristics of bus trunk should be investigated and verify its long-term reliability during the life time of the wind tower.

  • PDF

송전철탑 부근의 대지전위 억제를 위한 이격거리 산정모델 연구 (A Study on Separation Distance Calculation Model for Limitation of Earth Potential Rise Nearby Tower Footings)

  • 최종기;조환구;김태영;이동일
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.179-183
    • /
    • 2008
  • In case of a line-to-ground fault at transmission lines, a portion of fault current will flow into the earth through the footings of the faulted tower causing electrical potential rise nearby the faulted tower footings. In this situation, any buried pipelines or structures nearby the faulted tower can be exposed to the electrical stress by earth potential rise. Although many research works has been conducted on this phenomena, there has been no clear answer of the required separation distance between tower footings and neary buried pipeline because of its dependancy on the soil electrical charactersics of the concerned area and the faulted system. In this paper, an analytical formula to calculate the requried sepeartion distance from the faulted tower has been derived.

2MW급 풍력발전기 타워 쉘 최적 설계 (Research for 2MW Wind Turbine Tower Shell Design Optimization)

  • 홍혁수;박진일;방조혁;류지윤;김두훈
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.19-26
    • /
    • 2006
  • Tower shell design is very important because tower takes about 20% of overall wind turbine cost. This paper contains procedure of tower analysis and tower shell thickness optimization concept. Some of requirements like eigenfrequency and buckling evaluated by numerical method. But strength and fatigue can be derived by mathematical method simply. Using this procedure, tower shell thickness can be designed without repetition of complicated calculation.

  • PDF