• Title/Summary/Keyword: toughness characterization

Search Result 74, Processing Time 0.023 seconds

Two-Parameter Characterization for the Resistance Curves of Ductile Crack Growth (연선균열성장 저항곡선에 대한 2매개변수의 특성)

  • X.K.Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.488-503
    • /
    • 1999
  • The present paper considers the constraint effect on J-R curves under the two-parameter $J-A_2$ controlled crack growth within a certain amount of crack extension. Since the parameter $A_2$ in $J-A_2$ three-term solution is independent of applied loading under fully plasticity or large-scale defor-mation $A_2$ is a proper constraint parameter uring crack extension. Both J and $A_2$ are used to char-acterize the resistance curves of ductile crack growth using J as the loading level and $A_2$ are used to char-acterize the resistance curves of ductile crack growth using J as the loading level and A2 as a con-straint parameter. Approach of the constraint-corrected J-R curve is proposed and a procedure of transferring the J-R curves determined from standard ASTM procedure to non-standard speci-mens or real cracked structures is outlined. The test data(e.g. initiation toughness JIC and tearing modulus $T_R$) of Joyce and Link(Engineer-ing Fracture Mechanics 1997, 57(4) : 431-446) for single-edge notched bend[SENB] specimen with from shallow to deep cracks is employed to demonstrate the efficiency of the present approach. The variation of $J_{IC}$ and $T_R$ with the constraint parameter $A_2$ is obtained and a con-straint-corrected J-R curves is constructed for the test material of HY80 steel. Comparisons show that the predicted J-R curves can very well match with the experimental data for both deep and shallow cracked specimens over a reasonably large amount of crack extension. Finally the present constraint-corrected J-R curve is used to predict the crack growth resistance curves for different fracture specimens. over a reasonably large amount of crack extension. Finally the present constraint-corrected J-R curve is used to predict the crack growth resistance curves for different fracture specimens. The constraint effects of specimen types and specimen sizes on the J-R curves can be easily obtained from the constrain-corrected J-R curves.

  • PDF

Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC (액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향)

  • JUNG HUN-CHAE;YOON HAN-KI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

Fabrication and Characterization of Alumina/Silver Nanocomposites

  • Cheon, Seung-Ho;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.343-348
    • /
    • 2007
  • Alumina/silver nanocomposites were fabricated using a soaking method through a sol-gel route to construct an intra-type nanostructure. The pulse electric-current sintering (PECS) technique was used to sinter the nanocomposites. Several specimens were annealed after sintering. The microstructure, mechanical properties, critical frontal process zone (FPZ) size, and thermo-mechanical properties of the nanocomposites were estimated. The relative densities of the specimens sintered at 1350 and $1450^{\circ}C$ were 95% and 99%, respectively. The maximum value of the three-point bending strength was found to be 780 MPa for the $2{\times}2{\times}10 mm$ specimen sintered at $1350^{\circ}C$. The fracture toughness of the specimen sintered at $1350^{\circ}C$ was measured to be $3.60 MPa{\cdot}m^{1/2}$ using the single-edge V-notched beam (SEVNB) technique. The fracture mode of the nanocomposites was transgranular, in contrast to the intergranular mode of monolithic alumina. The fracture morphology suggested that dislocations were generated around the silver nanoparticles dispersed within the alumina matrix. The specimens sintered at $1350^{\circ}C$ were annealed at $800^{\circ}C$ for 5 min, following which the maximum fracture strength became 810 MPa and the fracture toughness improved to $4.21 MPam^{1/2}$. The critical FPZ size was the largest for the specimen annealed at $800^{\circ}C$ for 5 min. Thermal conductivity of the alumina/silver nanocomposites sintered at $1350^{\circ}C$ was 38 W/mK at room temperature, which was higher than the value obtained with the law of mixture.

A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head (액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성)

  • Hong, Hyun-Uk;Bae, Sang-Hyun;Kwon, Soon-Il;Lee, Je-Hyun;Do, Jeong-Hyeon;Choi, Baig-Gyu;Kim, In-Soo;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

New energy partitioning method in essential work of fracture (EWF) concept for 3-D printed pristine/recycled HDPE blends

  • Sukjoon Na;Ahmet Oruc;Claire Fulks;Travis Adams;Dal Hyung Kim;Sanghoon Lee;Sungmin Youn
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • This study explores a new energy partitioning approach to determine the fracture toughness of 3-D printed pristine/recycled high density polyethylene (HDPE) blends employing the essential work of fracture (EWF) concept. The traditional EWF approach conducts a uniaxial tensile test with double-edge notched tensile (DENT) specimens and measures the total energy defined by the area under a load-displacement curve until failure. The approach assumes that the entire total energy contributes to the fracture process only. This assumption is generally true for extruded polymers that fracture occurs in a material body. In contrast to the traditional extrusion manufacturing process, the current 3-D printing technique employs fused deposition modeling (FDM) that produces layer-by-layer structured specimens. This type of specimen tends to include separation energy even after the complete failure of specimens when the fracture test is conducted. The separation is not relevant to the fracture process, and the raw experimental data are likely to possess random variation or noise during fracture testing. Therefore, the current EWF approach may not be suitable for the fracture characterization of 3-D printed specimens. This paper proposed a new energy partitioning approach to exclude the irrelevant energy of the specimens caused by their intrinsic structural issues. The approach determined the energy partitioning location based on experimental data and observations. Results prove that the new approach provided more consistent results with a higher coefficient of correlation.

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.

Effect of Groove Conditions on the Mechanical Properties of Welds Produced by the Combined Welding Process of Flux Cored Arc and Electro Gas in EH36 TMCP Steel Plate for Hull Structures (선체구조용 EH36 TMCP 후판의 FCAW 및 EGW 조합 용접부 기계적 성질에 미치는 개선조건의 영향)

  • Kim, Kihyuk;Kim, Kiwon;Sim, Hoseop;Bae, Kangho;Hong, Hyunuk;Park, Byunggyu
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.35-40
    • /
    • 2015
  • Characterization of microstructures and mechanical properties of 83mm thickness EH36-TM welds produced by the combined flux cored arc (FCA) and electro gas (EG) welding processes has been studied with the two different groove conditions, single-V (SV) and double-V (DV) bevels. The welding consumables used for FCA and EG welding processes were ASME/AWS A5.29 (E81T1-K2) and A5.26 (EG72T), respectively. Experimental results showed that all the mechanical properties of welds such as tensile property, CVN toughness and Vickers hardness met IACS requirements. The tensile strength of EG welded plates were reduced by approximately 4% (DV: 3.8%, SV: 4.2%) compared to the base metal. The hardness value of SV-beveled weld metal was slightly lower than that of DV-beveled one. There were no significant differences as per welding groove conditions except for the weld metal. In addition, at the fusion line, the toughness of SV condition was 20J lower and the weld metal was 40J lower than DV condition, respectively. On the basis of microstructural analysis, grain boundary ferrite (GBF) structures for SV condition were 2 times higher volume fraction than for DV condition and their packet sizes were coarsened to almost double. It was thus suggested that the GBF volume fractions and packet sizes in the weld metal of EH36-TM steel plates are the most important factors affecting the mechanical properties of the combined FCA and EG welded joint. Nevertheless, all the results of welds with both DV and SV conditions were found to be excellent.

A Study on the Fabrication and Mechanical Properties of $WC-Co-Al_2O_3$ Ceramic Composites Using WC Powders Synthesized by SHS Method and Commercial WC Powders (SHS 화학로법에 의해 합성된 WC 분말과 상용 WC 분말을 이용한 $WC-Co-Al_2O_3$ 세라믹 복합체의 제조 및 그 기계적 특성에 관한 연구)

  • Lee, K.R.;Cho, D.H.;Lee, H.B.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1392-1400
    • /
    • 1995
  • WC-10wt%Co-Al2O3 ceramic composites, using both the SHS (Self-propagating High Temperature Synthesis) synthesized WC powder method and commercial WC powder, were prepared by varing WC-Co/Al2O3 vol% ratio and sintering temperature (1350℃∼1650℃) for 1 hr in Ar atmosphere. Mechanical characterization has been investigated by Instron meterial testing system and Vicker's hardness test. Compositional and structural chracterizations were carried out by energy-dispersive analysis of X-ray (EDAX) data and scanning electron microscope (SEM). Electrical characterization was carried out by the electrical resistivity measurement using 4-point probe method. As sintering period increased and Al2O3 contents decreased in WC-10wt%Co-Al2O3 ceramic composite, shrinkage and relative density increased, resulting in maximum values at 1600℃. Also the major matrix phase changed with increasing Al2O3 content from 0 to 100 vol%. It was also identified by SEM, EDAX, and electrical resistivity measurement. Based on the results of analysis of flexural strength, toughness and hardness, the mechanical properties of WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were better than those WC-10wt%Co-Al2O3 ceramic composites using commercial WC powder because WC-10wt%Co-Al2O3 ceramic composites using the SHS synthesized WC powder were sintered very well due to small initial particle size. By the addition of 40 vol% Al2O3 [60(WC=10wt%Co)-40Al2O3], it was possible to obtain a proper candidate as a superalloy.

  • PDF

A Study on Synthesis and Characterization of TiZrB$_2$ Composite by SHS Microwave (SHS 마이크로파에 의한 TiZrB$_2$ 복합재료의 합성 및 특성연구)

  • 이형복;윤영진;오유근;안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 1999
  • TiZrB2 solid solution was synthesized using fine powders of Ti, Zr and B by SHS microwave process. The characterization of the synthesized powder and sintered bodies ws investigated. The combustion temperature and rate were increased with increasing the mole ratio of Zr in temperature profile, and showed the maximum combustion temperature and velocity values of 285$0^{\circ}C$ and 14.6mm/sec in Ti0.2Zr0.8B2 composition. Phase separation has been occured into a composite with TiB2 and ZrB2 phases from TiZrB2 solid solution, which was hot pressed sintering at 30 MPa for an hour at 190$0^{\circ}C$. At the composition of Ti0.8Zr0.2B2 the best properties has been obtained in relative density, bending strength, fracture toughness and hardness, with 99%, 680 MPa, 7.3MPa.m1/2 and 2750 Kg/$\textrm{mm}^2$ respectively.

  • PDF

Mechanical and tribological characterization of $Si_{3}N_{4}-ZrO_{2}$ composites (질화규소-지르코니아 복합체의 기계적 및 내마모 특성)

  • 김성호;이수완;엄호성;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.217-223
    • /
    • 1999
  • In this study, the effects of the content of $ZrO_{2}$ in $Si_{3}N_{4}$ on mechanical and wear properties were investigated. $Si_{3}N_{4}$ based composites containing 0~40 wt% $ZrO_{2}$ powders were fabricated using hot isostatic pressing (HIP), at $1750^{\circ}C$, 172 MPa for 1 hour in $N_{2}$ gas. Mechanical properties and wear properties of composites were examined. Mechanical properties (hardness, strength, and fracture toughness) of $Si_{3}N_{4}-ZrO_{2}$ composite were decreased with increasing the amount of $ZrO_{2}$, but relative density of composites were increased. Further, the increase in amount of $ZrO_{2}$, reduced wear rates in air. It was found that wear behaviors in air were related to microcracking.

  • PDF