• Title/Summary/Keyword: toughness assessment

Search Result 67, Processing Time 0.021 seconds

Fracture behavior using AE method and reliability assessment of CFRP based on absorbed moisture (흡습된 CFRP의 AE에 의한 파과거동과 신뢰성 평가)

  • 남기우;김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.38-50
    • /
    • 1996
  • Recently carbon fiber reinforced plastic (CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and pipes. However, mechanical properties of such materials may be change when CFRP and exposed to corrosive environment for long periods of time. The degradation behavior of carbon fiber/epoxy resin composite material in distilled water is investigated using acoustic emission (AE) technique, Fracture toughness tests are performed on the compact tension specimens that are pilled by two types of $[O_2/9O_2]_{3s}$ and $[O/9O]_6s$. During the testes, AE test was carried out to monitor the damage of CFRP by moisture absorption. The data was treated by 2-parameter Weibull distribution and the fracture surface was observed by scanning electron microscope.

  • PDF

Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time (결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

Pressure-Temperature Limit Curve of Reactor Vessel by ASME Code Section III and Section XI

  • M.J. Jhung;Kim, S.H.;Lee, T.J.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.498-513
    • /
    • 2001
  • Performed here is a comparative assessment study for the generation of the pressure- temperature (P/T) limit curve of the reactor vessel. Using the cooling or heating rate and vessel material properties, the stress distribution is obtained to calculate stress intensity factors, which are compared with the material fracture toughness to determine the relations between operating pressure and temperature during cool-down and heat-up. P/T limit curves are generated with respect to crack direction, clad thickness, toughness curve, cooling or heating rate and neutron fluence, and their results are compared.

  • PDF

Comparison with R Curve Behavior fer the K and J Parameter of structural Steel Hot-Rolled Thin Plates (일반구조용강 열간압연 박판의 K와 J 파라미터에 대한 R곡선 거동의 비교)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.812-815
    • /
    • 2002
  • The shape of K-R curve for an ideally brittle material is flat because the surface energy is an unvaried material property. However, the K-R curve can take on a variety of shapes when nonlinear material behavior accompanies fracture. By the way, a general metallic material is nonlinear, structural steel is such. Therefore, the J-R curve form J-integral value instead of K parameters can be used to evaluate elastic-plastic materials with flaws in terms of ductile fracture that can be significant to design. In this paper, R-curve behaviors form K and J parameter is considered for the precise assessment of fracture analysis, in case of JS-SS400 steels.

  • PDF

Pressure-temperature limit curve for reactor vessel evaluated by ASME code

  • Jhung, Myung Jo;Kim, Seok Hun;Jung, Sung Gyu
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.191-208
    • /
    • 2002
  • A comparative assessment study for a generation of the pressure-temperature (P-T) limit curve of a reactor vessel is performed in accordance with ASME code. Using cooling or heating rate and vessel material properties, stress distribution is obtained to calculate stress intensity factors, which are compared with the material fracture toughness to determine the relations between operating pressure and temperature during reactor cool-down and heat-up. P-T limit curves are analyzed with respect to defect orientation, clad thickness, toughness curve, cooling or heating rate and neutron fluence. The resulting P-T curves are compared each other.

Application of Engineering Critical Assessment Method in the Development Stage of Welding Consumables (용접 재료 개발 단계에서 ECA 기법을 통한 재료의 인성 적합성 평가)

  • Shin, Yong-Taek;Jo, Young-Ju;Seo, Dae-Gon
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.16-19
    • /
    • 2016
  • Needs for structural integrity procedure such as BS 7910, the nuclear industry document R6 Rev.4 and the European FITNET procedure are being increased in industry. Especially, BS 7910 allows metallic structures to be assessed on the basis of fracture mechanics analysis rather than strict adherence to design and fabricated codes. This study is to propose the flaw assessment to judge the toughness level of welding consumables at the development stage. The FCA welding consumables with YP 690MPa and CTOD over 0.25 mm have been developed and its allowable weld flaw size considering actually applied environment has been evaluated. Since the estimated allowable defect size is sufficiently detectable in nondestructive testing, the toughness of the developed material is judged to be appropriate and no problem in securing the structural integrity.

Development of Cleavage Fracture Toughness Locus Considering Constraint Effects

  • Chang, Yoon-Suk;Kim, Young-Jin;Ludwig Stumpfrock
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2158-2173
    • /
    • 2004
  • In this paper, the higher order terms in the crack tip stress fields are investigated macroscopically for more realistic assessment of structural material behaviors. For reactor pressure vessel material of A533B ferritic steel, effects of crack size and temperature have been evaluated using 3-point SENB specimens through a series of finite element analyses, tensile tests and fracture toughness tests. The T-stress, Q-parameter and q-parameter as well as the K and J-integral are calculated and mutual relationships are investigated also. Based on the evaluation, it has proven that the effect of crack size from standard length (a/W=0.53) to shallow length (a/W=0.11) is remarkable whilst the effect of temperature from -20$^{\circ}C$ to -60$^{\circ}C$ is negligible. Finally, the cleavage fracture toughness loci as a function of the promising Q-parameter or q-parameter are developed using specific test results as well as finite element analysis results, which can be applicable for structural integrity evaluation considering constraint effects.

Effect of Bonding Surface Laser Patterns on Interfacial Toughness of GFRP/Al Composite (GFRP/Al 복합재료의 접합부 레이저 패턴이 계면인성에 미치는 영향)

  • Woo Yong Sim;Yu Seong Yun;Oh Heon Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Fiber-metal laminates (FMLs) and polymer matrix composites (PMCs) are formed in various ways. In particular, FMLs in which aluminum is laminated as a reinforced layer are widely used. Also, glass fiber-reinforced plastics (GFRPs) are generally applied as fiber laminates. The bonding interface layer between the aluminum and fiber laminate exhibits low strength when subjected to hot press fabrication in the event of delamination fracture at the interface. This study presents a simple method for strengthening the interface bonding between the aluminum metal and GFRP layer of FML composites. The surfaces of the aluminum interface layer are engraved with three kinds of patterns by using the laser machine before the hot press works. Furthermore, the effect of the laser patterns on the interfacial toughness is investigated. The interfacial toughness was evaluated by the energy release rate (G) using an asymmetric double cantilever bending specimen (ADCB). From the experimental results, it was shown that the strip type pattern (STP) has the most proper pattern shape in GFRP/Al FML composites. Therefore, this will be considered a useful method for the safety assessment of FML composite structures.

Failure Probability Estimation of Flaw in CANDU Pressure Tube Considering the Dimensional Change (가동중 중수로 압력관의 외경과 두꼐 변화를 고려한 결함의 파손확률 예측)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2305-2311
    • /
    • 2002
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and heavy water coolant. Pressure tubes are installed horizontally inside the reactor and only selected samples are periodically examined during in-service inspection. In this respect, a probabilistic safety assessment method is more appropriate fur the assessment of overall pressure tube safety. The failure behavior of CANDU pressure tubes, however, is governed by delayed hydride cracking which is the major difference from pipings and reactor pressure vessels. Since the delayed hydride cracking has more widely distributed governing parameters, it is impossible to apply a general PFM methodology directly. In this paper, a PFM methodology for the safety assessment of CANDU pressure tubes is introduced by applying Monte Carlo simulation in determining failure probability Initial hydrogen concentration, flaw shape and depth, axial and radial crack growth rate and fracture toughness were considered as probabilistic variables. Parametric study has been done under the base of pressure tube dimension and hydride precipitation temperature in calculating failure probability. Unstable fracture and plastic collapse are used for the failure assessment. The estimated failure probability showed about three-order difference with changing dimensions of pressure tube.