• 제목/요약/키워드: total-phosphorus

검색결과 1,661건 처리시간 0.035초

Anaerobic Treatment of Food Waste Leachate for Biogas Production Using a Novel Digestion System

  • Lim, Bong-Su;Kim, Byung-Chul;Chung, In
    • Environmental Engineering Research
    • /
    • 제17권1호
    • /
    • pp.41-46
    • /
    • 2012
  • In this study, the performance of new digestion system (NDS) for the treatment of food waste leachate was evaluated. The food waste leachate was fed intermittently to an anaerobic reactor at increasing steps of 3.3 L/day (hydraulic retention time [HRT] = 30 day), 5 L/day (HRT = 20 day), and finally 10 L/day (HRT = 10 day). In the anaerobic reactor, the pH and alkalinity were maintained at 7.6 to 8.2 and 8,940-14,400 mg/L, respectively. Maximum methane yield determined to be 0.686L $CH_4$/g volatile solids (VS) containing HRT over 20 day. In the digester, 102,328 mg chemical oxygen demand (COD)/L was removed to produce 350 L/day (70% of the total) of biogas, but in the digested sludge reduction (DSR) unit, only 3,471 mg COD/L was removed with a biogas production of 158 L/day. Without adding any chemicals, 25% of total nitrogen (TN) and 31% of total phosphorus (TP) were removed after the DSR, while only 48% of TN and 32% of TP were removed in the nitrogen, phosphorus, and heavy metals (NPHM) removal unit. Total removal of TN was 73% and total removal of TP was 63%.

한국의 호수 수질관리의 문제점 (Problems of lake water management in Korea)

  • 김범철;전만식;김윤희
    • 한국환경생태학회:학술대회논문집
    • /
    • 한국환경생태학회 2003년도 추계학술논문발표회 논문집
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

Theory and Practices of Water Pollution Control by Wetland - a Case Study of Reed Wetland in Baiyangdian Lake

  • Li, Guibao;Zhou, Huaidong;Liu, Fang;Wang, Dianwu
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.72-76
    • /
    • 2004
  • Wetland is an important eco-system on the earth and can effectively control agricultural non-point source pollution. Reed is a typical wetland plant for land/inland water ecotone in north China. The studies indicated that reed had a underground rooted-stem, which formed a 'high speeded-connecting vessels' i.e. reed root channel (RRC) in Baiyangdian lake of Hebei province. It spread predominantly along horizontal direction underground and are mainly distributed at 18-75 cm. The results of field work from healthy reed-wetland (HRW) and regarded reed-wetland (RRW) showed that the reed, averagely, in HRW is 4.2 m height, 1 cm diameter, 65/m2 density; in RRW is 2.4 m height, 3 mm diameter, 86/m2 density. These results indicated the regradation of the function of RRC in RRW. The results of laboratory work of sewage purification from reed soil column (RSC) $(0\~100cm)$ and wheat soil column (WSC) showed that the efficiency of purification to sewage, in RSC, is high than in WSC, especially for phosphorus. The efficiency of purification, in RSC, is $92.6\%$ for total phosphorus, $43.5\%$ for total nitrogen, $54.1\%$ fur COD, respectively; in WSC, is $86.0\%$ for total phosphorus, $241.3\%$ for total nitrogen, $29.8\%$ for COD, respectively.

  • PDF

Tolerance Range Analysis of Fish on Chemical Water Quality in Aquatic Ecosystems

  • Kim, Jeong-Kyu;Han, Jeong-Ho;An, Kwang-Guk
    • 생태와환경
    • /
    • 제43권4호
    • /
    • pp.459-470
    • /
    • 2010
  • In this study, we analyzed fish tolerance guilds in mainstems and tributaries of 65 streams and rivers arid their relations to water quality using dataset sampled from April to November, 2009. For the study, water quality parameters including biochemical oxygen demand (BOD), electric conductivity (EC), total nitrogen (TN), total phosphorus (TP), ammonia nitrogen ($NH_3$-N), nitrate nitrogen ($NO_3$-N) and phosphate phosphorus ($PO_4$-P) were analyzed in the laboratory and also tolerance ranges in 3 category fishes of sensitive, intermediate, and tolerant species with high abundance were analyzed. According to fish guild analysis, tolerant species was 58% of the total community and the proportion of omnivore species was 63% of the total, indicating a degradation of habitats and water quality. Water quality was shown typical longitudinal gradients from the headwater to the down-river; TN and TP increased toward the down-rivers except for the big point-source area and ionic contents, based on, electric conductivity showed same pattern. Tolerance guild analysis of 9 major species with high abundance indicated that sensitive groups had narrower tolerance range in the water quality than the groups of intermediate and tolerant species. In contrast, tolerant groups including Zacco platypus, Carassius auratus, and Opsarichthys uncirostris amurensis had wider tolerance ranges than the groups of sensitive and intermediate species. Thus, each group was evidently segregated from the tolerance levels. Principal Component Analysis (PCA) employed for the relations of water quality to fish species in each groups suggests that water quality had highest eigenvalues with fish species in the 1st axis of the PCA and nitrogen (TN, $NH_3$-N, $NO_3$-N) and phosphorus (TP) were key components differentiating three groups of sensitive, intermediate and tolerance guilds.

Caffeine 섭취에 따른 성인 여자의 혈액과 소변중 다량 무기질 함량 변화에 관한 연구(I) -Na, K, Ca, P, Mg- (Macro Mineral Responses to Caffeine in Serum and Urine of Healthy Young Females(I) -Na, K, Ca, P, Mg-)

  • 임성아
    • Journal of Nutrition and Health
    • /
    • 제26권9호
    • /
    • pp.1118-1128
    • /
    • 1993
  • This study was undertaken to investigate the acute effect of caffeine consumption on the change of mineral concentration in serum and urinary mineral excretion in healthy young females. On two separate mornings at one week intervals, each subject drank a coffee which contained no caffeine and 3mg/kg body weight caffeine. To obviate dietary effects on mineral concentration in serum and urine, each subject fasted at least ten hours before consuming the test beverage. At one, two, three and four hours, serum and urine production collected seperately for measurement of sodium, potassium, calcium, phosphorus and magnesium concentration. The results were as following : 1) Mean age of subjects was 20.6$\pm$0.32, Mean body mass index of subjects was 21.64$\pm$0.89, which was within $\pm$10% of ideal body weight. 2) Total urine volume of caffein groups for 4 hour after caffeine consumption was higher than that of decaffeine one, but urine pH was unchanged after caffeine consumption. Total urinary four hour excretion of creatinine was not affected by caffeine consumption and creatinine clearance also was not different from the control value. 3) In serum, mean three hour content of sodium(p<0.01) and phosphorus was higher in the subject given the caffeine. Mean serum magnesium and calcium contents were lower in caffeine group than that of decaffeine one. Mean serum magnesium content for three hour after caffeine ingestion was affected by caffeine consumption(p<0.001). Mean serum content of potassium was unaffected by caffeine consumption. 4) Total urinary four hour excretion of sodium, increased significantly after caffeine consumption(p<0.05), while total urinary four hour excretion of potassium, calcium, phosphorus and magnesium was unchanged after caffeine intake. Urinary excretion of Na, Ca, P and Mg was greatest at one hour after caffeine consumption, especially urinary sodium and potassium excretion was significantly high(p<0.05, p<0.01). The above results show that only 3mg caffeine per kg body weight increase the urinary macro mineral excretion in healthy young females.

  • PDF

Degradation Pattern of Black phosphorus Field Effect Transistor

  • 이병철;주민규;진준언;이재우;김규태
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.120.1-120.1
    • /
    • 2015
  • We investigate the degradation pattern of Black phosphorus (BP) field effect transistor (FETs) investigated by using an mechanically exfoliated BP that react O2 and water vapor in ambient condition, degradation. The BP FETs was electrically measured every 20 minutes (1cycle) in the air, the total cycle is 100. We show electrical changes with Mobility, On/off ratio, Current and a significant positive shift in the threshold voltage. We extracted the current level at Vgs-Vth = 0, -10, -20 and fitting with Swiss-cheese model. This model suggested that Swiss-cheese model is well fitted with degradation pattern of BP FETs.

  • PDF

Degradation Pattern of Black phosphorus Field Effect Transistor

  • 이병철;주민규;진준언;이재우;김규태
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.167.1-167.1
    • /
    • 2015
  • We investigate the degradation pattern of Black phosphorus (BP) field effect transistor (FETs) was investigated by using an mechanically exfoliated BP that react O2 and water vapor in ambient condition, degradation. The BP FETs was electrically measured every 20 minutes (1cycle) in the air, the total cycle is 100. We show electrical changes with Mobility, On/off ratio, Current and a significant positive shift in the threshold voltage. We extracted the current level at Vgs-Vth = 0, -10, -20 and fitting with Swiss-cheese model. This model suggested that Swiss-cheese model is well fitted with degradation pattern of BP FETs.

  • PDF

DETERMINATION OF TROPHIC STATE AND TESTING OF PHOSPHORUS MODEL IN THE KI HEUNG RESERVOIR

  • Lee, Do-Hun;Oh, Jong-Min
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.199-208
    • /
    • 2000
  • The relationship between areal total phosphorus(TP) and areal hydraulic loading was identified and used as defining the trophic state of the reservoir. And three simple, conceptual TP models were tested against the measured in-reservoir TP concentration. The analyses were based on water quality data measured in the Ki Heung reservoir for two years. The results showed that Ki Heung reservoir has undergone eutrophic state, and Dillon's and Vollenweider's TP models were in close agreement with the measured annual mean TP concentration. However, the OECD's model understimated the measured annual mean TP concentration in the Ki Heung reservor. A discussion is given for the hypothetical application of TP loading plot which might be useful for establishing the TP control program in the resavoirs/lakes.

  • PDF

대청호에서 장기간 수질변동 및 인위적 Enclosure 영양염 투여실험에 따른 제한 영양염류 평가 (Long-term Water Quality Fluctuations in Daechung Reservoir and the Limiting Nutrient Evaluations Using In Situ Enclosure Nutrient Enrichment Bioassays (NEBs))

  • 박향미;안광국
    • 한국물환경학회지
    • /
    • 제28권4호
    • /
    • pp.551-560
    • /
    • 2012
  • The objectives of this study were to elucidate spatio-temporal heterogeneity of water chemistry and develop empirical models using trophic variables in Daechung Reservoir during 2005-2010 along with in situ tests of nutrient enrichment bioassays (NEB). The relations of water quality parameters in regard to precipitation showed that seasonal and interannual fluctuations of biological oxygen demand (BOD), total nitrogen (TN) and pH were minor, whereas conductivity, suspended solids (SS), and total phosphorus (TP) were largely varied in response to the magnitude of rainfall. The CHL maxima occurred immediately after the spate of TP during the high flow, indicating that phytoplankton growth was directly controlled by phosphorus. Empirical linear models of CHL-TP indicated that the variation of CHL in premonsoon was accounted 60% ($R^2$ = 0.60, p < 0.05, n = 54) by TP. In the mean time, empirical models of annual CHL-TN showed that the variation of CHL was weakly accounted ($R^2$ = 0.16, p < 0.001) by TN and more strongly ($R^2$ = 0.44, p < 0.001) by TP. Thus, the variation of CHL was more explained by the variation of TP than TN. In situ tests of Nutrient Enrichment Bioassays (NEBs) showed that the growth of CHL was greater in the P-treatments (as $PO_4-P$) than the control and N-treatment (as $NO_3-P$). Overall, our results suggest that phosphorus was aprimary limiting nutrient controlling the seasonal phytoplankton growth, based on the in situ experiments of NEBs.