• 제목/요약/키워드: total power

검색결과 5,720건 처리시간 0.031초

Energy-Efficient Base Station Operation in Heterogeneous Cellular Networks

  • Nguyen, Hoang-Hiep;Hwang, Won-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제15권12호
    • /
    • pp.1456-1463
    • /
    • 2012
  • In this paper, we study the ON/OFF control policy of base stations in two-tier heterogeneous cellular networks to minimize the total power consumption of the system. Using heterogeneous cellular networks is a potential approach of providing higher throughput and coverage compared to conventional networks with only macrocell deployment, but in fact heterogeneous cellular networks often operates regardless of total power consumption, which is a very important issue of modern cellular networks. We propose a policy that controls the activation/deactivation of base stations in heterogeneous cellular networks to minimize total power consumption. Under this policy, the total power consumed can be significantly reduced when the traffic is low while the QoS requirement is satisfied.

W-대역 Total Power Radiometer 설계 및 제작 (Design and Fabrication of a W-band Total Power Radiometer)

  • 정명숙
    • 한국군사과학기술학회지
    • /
    • 제9권2호
    • /
    • pp.103-110
    • /
    • 2006
  • We present a W-band radiometer to detect the metal targets on the ground environment. The type of the designed radiometer is the total power radiometer(TPR) for the simple configuration. The front end of the TPR consists of only the Mixer and LO for miniaturizing the system. Because the radiometer system does not use the low noise amplifier, we use matching circuits and a diode detector configured as a voltage doubler to compensate the degradation of sensitivity. We solve the temperature variation problems by filtering the reference voltages of the radiometer output signals. Through some experiments, we have verified that the designed radiometer system has good performances in detecting metal targets lying at several hundred meters.

Enhanced Variable On-time Control of Critical Conduction Mode Boost Power Factor Correction Converters

  • Kim, Jung-Won;Yi, Je-Hyun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.890-898
    • /
    • 2014
  • Critical conduction mode boost power factor correction converters operating at the boundary of continuous conduction mode and discontinuous conduction mode have been widely used for power applications lower than 300W. This paper proposes an enhanced variable on-time control method for the critical conduction mode boost PFC converter to improve the total harmonic distortion characteristic. The inductor current, which varies according to the input voltage, is analyzed in detail and the optimal on-time is obtained to minimize the total harmonic distortion with a digital controller using a TMS320F28335. The switch on-time varies according to the input voltage based on the computed optimal on-time. The performance of the proposed control method is verified by a 100W PFC converter. It is shown that the optimized on-time reduces the total harmonic distortion about 52% (from 10.48% to 5.5%) at 220V when compared to the variable on-time control method.

농업용 트랙터의 주요 농작업 소요동력 분석 (Analysis of Power Requirement of Agricultural Tractor by Major Field Operation)

  • 김용주;정선옥;박승제;최창현
    • Journal of Biosystems Engineering
    • /
    • 제36권2호
    • /
    • pp.79-88
    • /
    • 2011
  • The purpose of this study was to analyze power requirement of an agricultural tractor by major field operations. First a survey was conducted to obtain annual usage ratio of agricultural tractor by field operation. Plowing, rotary tillage, and loader operations were selected as major field operations of agricultural tractor. Second, a power measurement system was constructed with strain-gauge sensors to measure torque of four driving axles and a PTO axle, speed sensors to measure rotational speed of the driving axles and an engine shaft, pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to calculate power requirement. Third, the major field operations were experimented under fields with different soil conditions following planned operation paths. Power requirement was analyzed during the total operation period consisted of actual operation period (plowing, rotary tillage, and loader operations) and period before and after the actual operation (3-point hitch operating, forward and reverse driving, braking, and steering). Power requirement of tractor major components such as driving axle part, PTO part, main hydraulic part, and auxiliary hydraulic part were measured and calculated to determine usage ratio of agricultural tractor power. Results of averaged power requirement for actual field operation and total operation were 23.1 and 17.5 kW, 24.6 and 19.1 kW, and 14.9 and 8.9 kW, respectively, for plowing, rotary tillage, and loader operations. The results showed that rotary tillage required the greatest power among the operations. Averaged power requirement of driving axles, PTO axle, main hydraulic part, and auxiliary part during the actual field operation were 8.1, 7.8, 3.4, and 1.5 kW, respectively, and the total requirement power was about 70 % (20.8 kW) of the rated power. Averaged power requirement of driving axles, PTO axle, main hydraulic, and auxiliary hydraulic for the total operation period were 6.5, 6.0, 2.1, 0.9 kW, respectively, and total requirement power was about 52 % (15.5 kW) of the rated power. Driving axles required the greatest amount of power among the components.

한국의 가정용 대기전력 소모현황 조사연구 (Survey on the Residential Standby Power Consumption in Korea)

  • 김남균;서길수;김상철;김은동
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권8호
    • /
    • pp.472-476
    • /
    • 2004
  • Standby power is the electricity consumed in an electrical equipment when it is switched-off or not performing its main function. Due to the acceleration of digital electronics and home networking, standby power use tends to increase rapidly year by year. In this paper, standby power consumption in residential sector in Korea has been surveyed and reported for the first time. Totally 825 pieces of electrical equipments that consume standby power in 53 households were investigated. The average standby power per equipment and total standby power per household were 3.66W and 57.0W, respectively. Annual standby power consumption per household was estimated 306kWh; which means the standby power consumption in residential sector in Korea can be estimated 4.6TWh a year representing 1.67 percent of total electrical consumption (274TWh).

A NOVEL DISCUSSION ON POWER FUZZY GRAPHS AND THEIR APPLICATION IN DECISION MAKING

  • T. BHARATHI;S. SHINY PAULIN;BIJAN DAVVAZ
    • Journal of applied mathematics & informatics
    • /
    • 제42권1호
    • /
    • pp.123-137
    • /
    • 2024
  • In this paper, Power fuzzy graphs is newly introduced by allotting fuzzy values on power graphs in such a way that the newly added edges, has the edge membership values between a closed interval which depends on vertex membership values and the length of the added edges. Power fuzzy subgraphs and total power fuzzy graphs are newly defined with properties and some special cases. It is observed that every power fuzzy graph is a fuzzy graph but the converse need not be true. Edges that are incident to vertices with the least vertex membership values are retained in the least power fuzzy subgraph. Further, the application of these concepts in real life time has been presented and discussed using power fuzzy graph model.

Investigation of Single-Input Multiple-Output Wireless Power Transfer Systems Based on Optimization of Receiver Loads for Maximum Efficiencies

  • Kim, Sejin;Hwang, Sungyoun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.145-153
    • /
    • 2018
  • In this paper, the efficiency of single-input multiple-output (SIMO) wireless power transfer systems is examined. Closed-form solutions for the receiver loads that maximize either the total efficiency or the efficiency for a specific receiver are derived. They are validated with the solutions obtained using genetic algorithm (GA) optimization. The optimum load values required to maximize the total efficiency are found to be identical for all the receivers. Alternatively, the loads of receivers can be adjusted to deliver power selectively to a receiver of interest. The total efficiency is not significantly affected by this selective power distribution. A SIMO system is fabricated and tested; the measured efficiency matches closely with the efficiency obtained from the theory.

냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향 (The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System)

  • 안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.

전력계통의 TTC(Total Transfer Capability) 산정을 위한 수송능력평가 프로그램 향상 (Enhancement Power System Transfer Capability Program (PSTCP) To Calculate Total Transfer Capability in Power Systems)

  • 김상암;이병준;송길영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1514-1516
    • /
    • 1999
  • This paper presents a sequential framework that calculates the total transfer capabilities of power transmission systems. The proposed algorithm enhances the Power System Transfer Capability Program (PSTCP) in conjunction with the Continuation Power Flow(CPF) that is used for steady-state voltage stability analysis and modified Arnoldi-Chebyshev method that calculates rightmost eigenvalues for small signal stability analysis. The proposed algorithm is applied to IEEE 39-bus test system to calculate TTC.

  • PDF

선형계획기반 선로혼잡처리에 대한 총송전용량 평가 (Assessment of Total Transfer Capability for Congestion Management using Linear Programming)

  • 김규호;송경빈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권11호
    • /
    • pp.447-452
    • /
    • 2006
  • This paper presents a scheme to solve the congestion problem with phase-shifting transformer(PST) controls and power generation controls using linear programming method. A good design of PST and power generation control can improve total transfer capability(TTC) in interconnected systems. This paper deals with an application of optimization technique for TTC calculation. Linear programming method is used to maximize power flow of tie line subject to security constraints such as voltage magnitude and real power flow in interconnected systems. The results are compared with that of repeat power flow(RPF) and sequential quadratic programming(SQP). The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.