• Title/Summary/Keyword: total pore volume

Search Result 193, Processing Time 0.024 seconds

Impregnation of Nitrogen Functionalities on Activated Carbon Fiber Adsorbents for Low-level CO2 Capture (저농도 이산화탄소 포집용 활성탄소섬유 흡착제의 질소작용기 함침연구)

  • Hwang, Su-Hyun;Kim, Dong-Woo;Jung, Dong-Won;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.176-183
    • /
    • 2016
  • Activated carbon fibers (ACFs) for $CO_2$ adsorption were prepared from polyacrylonitrile (PAN) fiber through the systematic processes such as oxidation, activation and amination with the focus on the formation of nitration functional groups. Textural analysis of test samples revealed the decrease of specific surface area and pore volume by chemical activation including amination. The ratio of micropores to the total volume was 0.85 to 0.91, which was high enough with the pore size of 1.57 to 1.77 nm. Nitrogen compounds such as imine, pyridine and pyrrole presenting favorable interforces to $CO_2$ molecules were formed throughout the whole preparation steps. The aminated ACF adsorbent showed the enhanced adsorption capacity, 0.40 mmol/g for low-level $CO_2$ flow (3000 ppm) at room temperature. Selectivity of $CO_2$ against dry air ($O_2$ & $N_2$) also increased from 1.00 to 4.66 by amination.

Synthesis of Mesoporous Silica Using Municipal Solid Waste Incinerator Ash Slag : Influence of NaOH Concentration (생활(生活) 폐기물(廢棄物) 소각재(燒却材) 슬래그를 이용(利用)한 메조포러스 실리카 합성(合成) : NaOH 농도(濃度)의 영향(影響))

  • Han, Yo-Sep;Jung, Jong-Hoon;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.40-48
    • /
    • 2010
  • It was investigated that effects of NaOH concentration on synthesis of mesoporous materials using municipal solid waste incinerator ash slag (MSWI-ash slag). In order to increase the purity and maximize the amount of extracted Si content the raw MSWI-ash slag was mechanically activated. Extraction of Si from the MSWI-ash slag was carried out by alkali treatment using concentrated NaOH solution, which varied from 1M to 4M. Physical properties (i.e., pore size, specific surface area and total pore volume) of the synthesized mesoporous silica were also evaluated as a function of NaOH concentration via BET, SEM, TEM and small-angle X-ray scattering analyses. Over the entire range of NaOH concentration investigated (i.e., 1-4M), the synthesized mesoporous materials were determined to be SBA-15, which exhibited a hexagonal structure with the pore size of approximately 7 nm. On the other hand, specific surface area and total pore volume increased with NaOH concentration up to 3M while the values decreased at 4M, indicating that the optimal NaOH concentration for the synthesized mesoporous silica was approximately 3M. Further comparison analysis between two conditions (3M versus 4M) showed that the decrease in two physical properties at 4M NaOH concentration was likely due to the potential inhibition by excess Na ions on the formation of mesophase and the consequent increase of pore wall thickness by remaining Si ions.

Properties of Polymer-Modified Mortars Using Methylmethacrylate-Butyl Acrylate Latexes with Various Monomer Ratios (모노머비를 변화한 MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 성질)

  • Hyung, Won-Gil;Kim, Wan-Ki;Choi, Nak-Woon;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.273-279
    • /
    • 2003
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars using methylmethacrylate-butyl acrylate(MMA/BA) latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. From the test results, we knew that the pore volume of polymer-modified mortars using MMA/BA latexes at bound MMA contents of 60 and 70 percent is 7.5∼75nm and the fine pore volume is increased with an increase in the polymer-cement ratio. The total pore volume of polymer-modified mortars using MMA/BA latexes is linearly reduced with an increase in the bound MMA content and increased in the polymer-cement ratio. In general, the superior compressive strength of polymer-modified mortars using MMA/BA latexes is obtained at a bound MMA content of 70 percent and a polymer-cement ratio of 15%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the bound MMA content. The important factors affecting the properties of polymer-modified mortars using MMA/BA latexes polymerized with various monomer ratios are the variations of the pore size distribution with changing bound MMA content and the polymer-cement ratio.

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Antibacterial Activity of Activated Carbon Fibers Containing Silver Metal

  • Park, Soo-Jin;Kim, Byung-Joo;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.140-145
    • /
    • 2003
  • Antibacterial behaviors of PAN-based activated carbon fibers (ACFs) containing silver metal were investigated. The effects of surface and pore structures of the ACFs were studied by $N_2$/77 K adsorption and D-R plot as a function of silver loading content. The antibacterial activities were investigated by a dilution test against Staphylococcus aureus (S. aureus; gram positive) and Klebsiella pnemoniae (K. pnumoniae; gram negative). As experimental results, the ACFs showed some decreases in specific surface areas, micropore volumes, and total pore volume with an increase of silver content. However, the antibacterial activities of the ACFs were strongly increased against S. aureus as well as K. pnumoniae, which could be attributed to the presence of antibacterial metal in the ACFs system.

  • PDF

Preparation and Characterization of Activated Henequen Fiber

  • Jeong, Jong-Seon;Lee, Young-Seak;Yang, Xiao Ping;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.339-344
    • /
    • 2009
  • Henequen fiber was air-stabilized, carbonized, and steam-activated to obtain high surface area activated henequen fiber (AHF). Thermal behavior of henequen fibers has been studied by TGA. The structural morphology and characteristics were observed by SEM and BET surface area measurement. The yield of AHF from natural henequen was in the range of 20~25 wt%. Mesopores (2~2.5 nm) were developed on the AHF as the activation temperature was raised up to $700^{\circ}C$, and the band of mesopore size distribution moved to 15~30 nm when the activation were carried out at $900^{\circ}C$ for 30 min. The specific surface area and the total pore volume were about $1394\;m^2/g$ and $1.30\;cm^3/g$, respectively at this activation conditions.

Effects of Stearic Acid on the Watertightness Properties of the Cementitious Materials (시멘트 재료의 수밀성에 대한 스테아르산의 영향)

  • Na, Seung-Hun;Kang, Hyun-Ju;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.365-371
    • /
    • 2009
  • It is well known that the properties of concrete such as the compressive strength, water permeability, water tightness and durability are affected by micro-structure in hardened cement paste. Especially, for durability of concrete, watertightness of cementitious materials is the most critical property among various properties. Recently, many types of materials as organic and/or inorganic materials are used for watertightness of concrete. In this study, The effect of Stearic Acid at $0.5\;wt%{\sim}3.0\;wt%$ adding ratios on the hydration and watertightness property of cement were investigated. And we also discussed the changing of microstructure in hardened cement paste by addition of Stearic Acid. Cement paste with Stearic Acid showed improvement of watertightness by reducing of cement total pore volume and decomposition of Stearic Acid.

Microwave-enhanced gasification of sewage sludge waste

  • Chun, Young Nam;Song, Hee Gaen
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.591-599
    • /
    • 2019
  • To convert sewage sludge to energy, drying-gasification characteristics during microwave heating were studied. During the gasification of carbon dioxide, the main products were gas, followed by char, and tar in terms of the amount. The main components of the producer gas were carbon monoxide and hydrogen including a small amount of methane and light hydrocarbons. They showed a sufficient heating value as a fuel. The generated tar is gravimetric tar, which is total tar. As light tars, benzene (light aromatic tar) was a major light tar. Naphthalene, anthracene, and pyrene (light polycyclic aromatic hydrocarbon tars) were also generated, but in relatively small amounts. Ammonia and hydrogen cyanide (precursor for NOx) were generated from thermal decomposition of tar containing protein and nitrogen in sewage sludge. In the case of sludge char, its average pore diameter was small, but specific area, pore volume, and adsorption amounts were relatively large, resulting in superior adsorption characteristics.

Preparation and Characterization of Porous Low Reflective Coating Films for $SiO_2.ZrO_2$ System by Sol-Gel Dip-Coating Method (졸-겔 침지법에 의한 $SiO_2.ZrO_2$계 다공질 저반사 코팅막 제조 및 특성)

  • 김상진;한상목;신대용;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.774-780
    • /
    • 1997
  • Porous low reflective coating films of SiO2.ZrO2 system were prepared from the mixed alkoxide solutions of Zr(O-nC3H7)4 and partially prehydrolyzed TEOS by the sol-gel method using the dip-coating technique. In the case of 90SiO2.10ZrO2 porous coating films with HCl and H2O content was 0.3 mole and 4 mole, 378 m2/g of the specific surface area, 0.254 cm3/g of total pore volume, 30-50$\AA$ of average pore diameter. The transmittance of 90SiO2.10ZrO2 porous coated films was 95.38% at the wavelength of 550 nm, compared with the parent glass, the transmittance was increased with 4.38%.

  • PDF

Development of Concrete-Polymer Composite(II) -Physical Properties of Polymer(Resin) Concrete- (콘크리트-폴리머 복합재료 개발(II) -폴리머(레진) 콘크리트의 물성-)

  • Hwang, Eui-Hwan;Hwang, Taek-Sung;Kil, Deog-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1066-1072
    • /
    • 1999
  • The physical properties of polymer concrete were investigated for development of high-performance construction materials. Various specimens of polymer concrete were prepared using unsaturated polyester resin as the polymer-binder with the various dosage of calcium carbonate as microfiller (5~20 wt %) and fine aggregate(10~50 wt %). For the evaluation of the physical properties of polymer concretes, tests such as compressive strength, flexural strength, water absorption test, hot water immersion test, acid resistance test and pore size distribution analysis were conducted. As a result, it is concluded that compressive and flexural strengths of polymer concretes increased up to 4 times than those of conventional cement concrete. Whereas the compressive and flexural strengths of polymer concretes tested after hot water immersion, compared with those of polymer concretes tested before hot water immersion, decreased about 67%, 47%, respectively. By hot water immersion, total pore volume and porosity(%) of polymer concretes were remarkable increased due to decomposition of polymer binder. And also, it is showed that water absorption(%) and weight loss(%) of polymer concrete specimens by acid immersion, compared with those of ordinary portland cement concrete, decreased about 1/100, 1/27, respectively.

  • PDF