• Title/Summary/Keyword: total phosphorous

Search Result 249, Processing Time 0.02 seconds

Characteristics of Nutrient Concentrations in Groundwater under Paddy and Upland Fields (논과 밭 지하수의 영양물질 농도 특성)

  • Jang, Hoon;Kim, Jin-Soo;Kim, Young-Hyeon;Song, Chul-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.67-74
    • /
    • 2011
  • The objective of this study was to compare concentrations of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in groundwater under paddy and upland fields, and surface water recharging from a rural mixed land-use watershed. Chinese cabbage and hot pepper were cultivated on the upland field plot. The TN concentrations in upland groundwater showed double peaks (4.7, 4.3 mg/L, respectively) in April 2009 shortly after fertilizer application, indicating that TN concentrations are greatly influenced by fertilization. However, the TN concentrations in paddy groundwater were always lower than 2.0 mg/L irrespective of fertilization. Whereas the mean concentrations of TN and $NO_3$-N in upland groundwater significantly (p<0.05) higher than those in surface water, the mean concentrations of TP and $PO_4$-P in upland groundwater were significantly lower than those in surface water. On the other hand, the mean concentrations of TN, $NO_3$-N, TP and $PO_4$-P in paddy groudwater were significantly (p<0.05) lower than those in surface water. The TN concentrations in upland groundwater were generally higher than those in surface water during early April to early December due to the effect of fertilization, but vice versa in the other periods. In contrast, the TP concentrations in upland groundwater were always lower than those in surface water due to the sorption of inorganic phosphorous by soil. Moreover, the TN and TP concentrations in paddy groundwater were always lower than those in surface water, and therefore paddy groundwater may dilute nutrient concentrations in surface water when paddy groundwater and surface water mix.

Treatment of Animal Wastewater with Absorbent Oxidation (축산폐수의 흡착산화 처리)

  • 오인환;박정현;이명규;전병태;김형화
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.136-144
    • /
    • 1994
  • A long- time aeration method was developed for purification of animal wastewater. Under repeated aereations of 4 hours on and 4 hours off, the higher removal rates were obtained which were in average of 99%, 96%, 92% and 50% for BOD, SS, total nitrogen and phosporous, respectively. In detail, the measured BOD concentrations of the influent and effluent were 2,700ppm and 40ppm while the SS concentrations in the primary chamber and of the effluent were about 3,000 and 110 ppm, respectively. Zeolite and activated carbon, applied for removing the nitrogen and phosphorous, showed a good absorption, especially zeolite for NH$_4$-N and activated carbon for NO$_3$-N and PO$_4$-P. The treatment cost per head by this method amounts to 1,923 won and it comes to 1.6% in the whole production cost. Therefore, this method is economically available with the half cost of the conventional activated sludge process.

  • PDF

The Change in Residual Stress of Electroless Nickel Deposits on Aluminum Substrate (Al 소지상에 무전해 Ni도금시 응력 변화)

  • 권진수;최순돈
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.100-108
    • /
    • 1996
  • The internal stress of acidic electroless nickel deposits on zincated aluminum was determined by spiral contractometer. Several plating conditions such as inhibitor and complexing agent concentrations and pH affecting the internal stress were studied. The resulting intrinsic stress contribution to the total stress was discussed in terms of phosphorous content of the deposit, solution pH, and surface morphology. However, the most important was found to be thermal stress for the total stress of Al substrate, because of high thermal expansion coefficient of the aluminum substrate.

  • PDF

Effects of Water Temperature, Light and Dredging on Benthic Flux from Sediment of the Uiam Lake, Korea (의암호에서 퇴적물 용출에 대한 수온, 빛과 퇴적물 제거의 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Im, Jong Kwon;Lee, Eun Jeong;Yu, Soon Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.670-679
    • /
    • 2017
  • An experiment to study the effect of temperature, light, and dredging on release of nutrients downstream from Gongjicheon in the Uiam reservoir was carried out in the laboratory using sediments from different depths. At various water temperatures, dissolved total nitrogen was not released, but the average nutrient flux of dissolved total phosphorus was increased (0.034 at $15^{\circ}C$, 0.005 at $20^{\circ}C$, 0.154 at $25^{\circ}C$, $0.592mg/m^2/d$ at $30^{\circ}C$). Dissolved total phosphorous was released in controlled darkness. In contrast, in controlled light, the concentrations of dissolved total phosphorous and dissolved total nitrogen in the overlying water steadily decreased during the study period (70 d), because they were continuously consumed by the growth of photosynthetic algae. However, there was no significant relationship between water nutrient concentration, nutrient release, and the depth of the sediment. We concluded that the dredging of sediment would not affect the nutrient release rate of the sediment, because there were no significant differences in the nutrient concentrations released from the sediment. When the sediment was removed from the surface to 20 cm in depth, the nutrients were not transferred to the water body, implying that the sediment removal had little effect on secondary pollution.

The Effect of Filling Step on the Removal Efficiency and Filtration Performance in the Operation of Submerged Membrane-Coupled Sequencing Batch Reactor (침지형 막결합 연속회분식 반응기의 운전에서 폐수의 도입단계가 제거효율과 여과성능에 미치는 영향)

  • Kim, Seung-Geon;Lee, Ho-Won;Kang, Yeung-Joo
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.263-269
    • /
    • 2011
  • In the operation of submerged membrane-coupled sequencing batch reactor, the effect of filling step on the removal efficiency and filtration performance were investigated. Two sets of operation modes, the filling step located in the beginning of aerobic step (Mode-1) and the beginning of anoxic step (Mode-2), during 89 days were conducted. There was no wide difference in the COD removal and filtration performance between two sets of operation modes. But in the removal efficiency of nutrients (total nitrogen and total phosphorous), Mode-2 was more effective than Mode-1. In the case of Mode-2, average removal efficiencies of COD, total nitrogen, and total phosphorous were 99.1, 73.3, and 77.3%, respectively.

Mineral Phosphate Solubilization by Wild Type and Radiation Induced Mutants of Pantoea dispersa and Pantoea terrae

  • Murugesan, Senthilkumar;Lee, Young-Keun;Kim, Jung Hun
    • Journal of Radiation Industry
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Three mineral phosphate solubilizing (MPS) bacteria where isolated from rhizosphere soil samples of common bean and weed plants. 16S rDNA analysis indicated that the isolate P2 and P3 are closely related to Pantoea dispersa while isolate P4 is closely related to Pantoea terrae. Isolates P2 and P3 recorded $381.60{\mu}g\;ml^{-1}$ and $356.27{\mu}g\;ml^{-1}$ of tricalcium phosphate (TCP) solubilization respectively on 3 days incubation. Isolate P4 recorded the TCP solubilization of $215.85{\mu}g\;ml^{-1}$ and the pH was dropped to 4.44 on 24 h incubation. Further incubation of P4 sharply decreased the available phosphorous to $28.94{\mu}g\;ml^{-1}$ and pH level was raised to 6.32. Gamma radiation induced mutagenesis was carried out at $LD_{99}$ dose of the wild type strains. The total of 14 mutant clones with enhanced MPS activity and 4 clones with decreased activity were selected based on solubilization index (SI) and phosphate solubilization assay. Mutant P2-M1 recorded the highest P-solubilizing potential among any other wild or mutant clones by releasing $504.21{\mu}g\;ml^{-1}$ of phosphorous i.e. 35% higher than its wild type by the end of day 5. A comparative evaluation of TCP solubilization by wild type isolates of Pantoea and their mutants, led to select three MPS mutant clones such as P2-M1, P3-M2 and P3-M4 with a potential to release >$471.67{\mu}g\;ml^{-1}$ of phosphorous from TCP. These over expressing mutant clones are considered as suitable candidates for biofertilization.

Characteristics of Pollutant Loading into Streams from Flooded Paddies -On The Special Reference to Total Kjeldahl Nitorgen and Total phosphorous- (농경지로부터의 오염물질 유출부하특성 - 전Kjeldahl 질소 및 전인을 중심으로)

  • 홍성구;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.93-102
    • /
    • 1989
  • With an objective to provide basic information for the management and the prediction of eutrophication in lentic water Systems, total amount of Kjeldahl nitrogen(T-N) and phosphorous(T-P) from irrigated water and drained water from flooded paddies were investigated during the rice growing period of 1988. A 29.3 ha paddies near Jungnam-myun, HwaSung-gun, Gyungi Province, Korea was instrumented for measuring runoff and sampling irrigated water and drained water from paddies. The following conclusions may be drawn from the result of this study. 1.During 115 days of investigation, T-N load for paddies was 362.6kg and T-P 63.44kg.These would be converted to 12.4kg T-N/ha and 2.17kg T-P/ha, respectively. 2.The T-N and T-P loadings in different periods showed a significant difference. The 25% of T-N loading was drained soon after fertilization period and 60% was drained during the rainy season from July 5 to July 24. 3.Annual loadings from paddies could be calculated to 30kg T-N/ha/year and 52kg T-P/ha/year considering non-measurement periods. 4.After the rainy season, the nutrient loads from drained water showed much less than those from irrigated water, and it may be suggested that the paddies would act as a stabilization pond. 5.The average concentrations of nutrients at 0.9km downstream from investigated paddies were 2.02(T-N) mg/l and 0.52(T-P) mg/I, which were 1.82(T-N) mg/l and 0.056(T-P)mg/l lower than those of drained water from paddies.

  • PDF

Spatial Characterization of Water Pollution in the Urban Stream Watershed (Gap Stream), Korea (도시하천(갑천) 유역에서 수질오염의 공간적 특성)

  • Lee, Heung-Soo;Hur, Jin;Jeong, Seon-A;Hwang, Soon-Jin;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.943-951
    • /
    • 2006
  • Spatial distribution of water pollution in the Gap Stream was investigated from October to November, 2005. Sampling was conducted three times including effluents discharged from a wastewater treatment plant (WWTP) and a dam reservoir during the low-flow period. As a typical urban stream, total nitrogen and inorganic nitrogen concentrations increased toward downstream. Ammonia concentration was the highest in the treated water of the wastewater treatment plant and the lowest nitrate concentration was found in the effluent of the dam reservoir. A part of soluble reactive phosphorous (SRP) in total phosphorous was 22~54% in the upstream reach of WWTP in the Gap Stream whereas 68~73% in the downstream reach. Mean chlorophyll-a concentration ranged from 1.6 to $11.0{\mu}g/L$ and it tends to increase toward downstream except for WWTP effluent. As expected, untreated wastewater and WWTP effluent were suggested as the major sources of water pollution in the Gap Stream. In this study, the water pollution of the Gap Stream is a significant undergoing typical eutrophication, caused by excessive phosphorus and nitrogen nutrients from WWTP located in the watershed. As a result, the critical factor for the water pollution was evaluated to dissolved inorganic nitrogen and phosphorus nutrients. Particularly, SRP is a most important for the eutrophication. It suggest that may occur in the most urban streams of Korean peninsula. Therefore, because the necessity of water pollution management in the urban stream, inorganic N and P nutrients should be included as an essential component of water quality criteria in the advanced water quality project of Korean Government by enforcing of water quality assessment and total maximum daily loads (TMDLs).

Assessment of sediment and total phosphorous loads using SWAT in Oenam watershed, Hwasun, Jeollanam-do (SWAT 모델을 이용한 외남천 유역의 토사 및 총인 유출량 분석)

  • Lee, Taesoo
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.240-250
    • /
    • 2016
  • Monitoring for water quantity and quality was conducted in this study for 2 years (2012~2013) in Oenam Stream which is a tributary of Seomjin River and upstream of Juam Lake. Suspended solid and total phosphorous(TP) were monitored and analyzed, then water quantity and quality as well as their relation with landuses were identified based on the previous study. Flow showed the similar pattern with precipitation but some discrepancies existed due to the distance between weather station(Gwangju) and study area. Watershed was modeled based on observed data using SWAT(Soil and Water Assessment Tool). Model calibration was conducted using data obtained in 2012 and validation was conducted using data in 2013. The coefficient of determination ($R^2$) between observed and modeled showed 0.6644 and 0.5176 for flow and TP, respectively for model calibration period. For validation period, $R^2$ was 0.7529 for flow and 0.7057 for TP, which were higher than calibration period. Hot spots were determined for watershed management by analyzing the amount of sediment and TP outcome from each sub-watershed. TP loading by landuse determined that cropland, of which the area takes only 5% from entire watershed, generated 53.6% of TP and residential and cowshed was responsible for 23.5% of TP loading.

  • PDF

Evaluation of the Nutrient Uptakes of Floating and Submerged Plants under Experimental Conditions (실험실 조건에서 부유식물과 침수식물의 영양염류 흡수능 및 특성 평가)

  • Lee, Geun-Joo;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • The performance and characteristics of nutrient removal in wetlands influenced by plant type. We tested a floating plant, Eichhornia crassipes, and a submerged plant, Ceratophyllum demersum, under the same environmental conditions to understand the differences in nutrient uptake by these different plant forms. The total nitrogen and phosphorus in the water decreased in the following order: Water Only < Water + Soil < Floating Plants ${\approx}$ Submerged Plants and Water Only < Water+Soil < Floating Plants < Submerged Plants. Nitrogen and phosphorous concentrations increased in both plants; however, the phosphorous concentration was greater in C. demersum than E. crassipes. The submerged plant exhibited higher phosphorus uptake per unit biomass than the floating plant, but nitrogen uptake did not differ significantly. These results suggest that the presence of soil influences nitrogen and phosphorus removal from water, and that wetland plants play an important role in the assimilation and precipitation of phosphorus. Understanding the differences in contaminant removal performance and characteristics of various plant forms can help in the selection of diverse plants for constructed wetlands to improve water quality and provide ecosystem services such as wildlife habitat and landscape enhancement.