• 제목/요약/키워드: total nutrient load

검색결과 51건 처리시간 0.023초

가축분뇨실태조사를 위한 양분수지 산정 모델 개발 (Development of a Nutrient Budget Model for Livestock Excreta Survey)

  • 김덕우;유홍덕;임도영;정유진;김용석
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.769-779
    • /
    • 2017
  • Nutrient (i.e., nitrogen and phosphorus) budgets are required under a 'Livestock Excreta Survey'. A nutrient budget is one of the agri-environmental indicators that calculates the difference between the inputs and outputs of the amount of nutrients within a certain boundary and for a certain time period (e.g., 1 year). In this study, a nutrients budget model was developed to effectively determine the surplus of nutrients within a region in Korea. The C# program language was used in order to facilitate the deployment of a graphical user interface (GUI) and to enhance compatibility. Also, the model was developed on Windows OS, which is the commonly used operating system in Korea. The model was based on the OECD/Eurostat nutrient budget method, and it was modified to consider manure composting procedures as well. There are key features of the nutrient budget model, including directly use of the original data sets from various input and output sources, and a collectively exchange of the address in different formats. The model can quickly show the results of various spatial and temporal resolutions with the same data, as well as perform a sensitivity analysis with coefficients and easily compareresults using tables and graphs. Further, it would be necessary to study the extension of the scope of utilization, such as the application of various nutrient budget methods. It would also be helpful to investigate both pre and postprocessing information such as linking input data through online systems.

저수지 주변 식물의 침수시 수질 영향 (Assessment of Water Quality Impact of Submerged Lakeside Macrophyte)

  • 이요상;박종근
    • 환경영향평가
    • /
    • 제14권5호
    • /
    • pp.255-262
    • /
    • 2005
  • In summer and early autumn, eutrophication occurs occasionally in many reservoirs. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during water surface is rising after rainy season. This study include examination of pollutant load, species of plant, community structure and productivity of macrophyte in unit area at lakeside. The result of this research will be used as a guideline of water quality management on reservoir through assessing water quality effect of submerged plant. The areal distribution, composition of species and submerged area of macrophyte changes according to rainfall pattern every year, so it is difficult to calculate nutrient load annually from submerged macrophyte. In this study, the nutrient load from submerged macrophyte assess from Daecheong and Juam reservoir in 2001. TN and TP load of submerged macrophyte shows 0.043% and 0.069%, respectively, of annual discharge load on Daecheong watershed. At lake Juam, TN and TP shows 0.64% and 1.28% load, respectively. The reason that nutrient load of lake Juam is greater than that of lake Daecheong is that macrophyte distribution area of lake Juam is 5 times greater than that of lake Daecheong. Total nutrient load of lake Daecheong is 3 times greater than that of lake Juam.

수질오염총량관리 단위유역내 토양 양분 및 수질오염 부하량 상관관계 비교 (Correlation between Soil Nutrient Contents and Water Pollutant Loads in Hydrologic Unit Watersheds: Implication on the Total Maximum Daily Loads (TMDLs))

  • 조경식;이호식
    • 한국물환경학회지
    • /
    • 제27권4호
    • /
    • pp.509-515
    • /
    • 2011
  • For this study the 4 sub-watersheds Okdong A, Hankang B, Jecheon A and Hankang C which are the main streams of the Han River within the mid-level region of Chungju Dam are selected and the analysis of soils has been carried out through the soil basic survey. When it comes to the soil erosion amount the soil nutrient load has been calculated by utilizing the RUSLE erosion equation. In case of the data related to the measurement of water flow and quality the information available from the "Water Information System" one of the websites run by the Ministry of Environment has been used to calculate the water pollution load. The correlation between the soil nutrient load and the water pollutant load has been analyzed through making comparison. According to the results related to the soil nutrient load of each sub-watershed the Hankang C shows the highest values TOC 29,986.92 ton/yr, TN 3,860.33 ton/yr and TP 973.97 ton/yr respectively. Even when it comes to the loads related to water quality the Hankang C shows also comparatively high values TOC 6,625.64 ton/yr, TN 7,335.01 ton/yrand TP 145.49 ton/yr respectively. The soil nutrient loads of the sub-watersheds are shown to increase towards the lower stream meaning the load increases in the order of Hankang CHankang B and Okdong A. When it comes to the water pollutant load the value goes up along down the water system meaning the load gets higher in the order of Hankang C, Hankang B and Okdong A while utilizing the mainstream within the mid-level region of Chungju Dam as the basis. The correlation study showed that the nutrient content of soil is proportional to the pollutant load in water with the strongest positive correlation with TOC.

ASSESSMENT AND CONTROL OF TOTAL NUTRIENT LOADS IN WATERSHED AND STREAM NETWORK IN SOUTH-WEST TEXAS

  • Lee, Ju-Young;Choi, Jae-Young
    • Water Engineering Research
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, the population growth and agricultural development are rapidly undergoing in the South-West Texas. The junction of three river basins such as Lavaca river basin, Colorado-Lavaca Coastal basin and Lavaca-Guadalupe Coastal basin, are interesting for non-point and point source pollutant modeling: Especially, the 2 basins are an intensively agricultural region (Colorado-Lavaca Coastal/Lavaca-Guadalupe Coastal basins) and several cities are rapidly extended. In case of the Lavaca river basin, there are many range land. Several habitat types wide-spread over three relatively larger basins and five wastewater discharge regions are located in there. There are different hazardous substances which have been released. Total nutrient loads are composed of land surface load and river load as Non-point source and discharge from wastewater facilities as point source. In 3 basins region, where point and non-point sources of poll Jtion may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to how to assess and control the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern as non-point source with water quality related to pesticides, fertilizer, and nutrients and as point source with wasterwater discharge from cities. The GIS technique has been developed to aid in the point and non-point source analysis of impacts to natural resource within watershed. This project shows the losses in $kg/km^2/year$ of BOD (Biological Oxygen Demand), TN (Total Nitrogen) and TP (Total Phosphorus) in the runoff from the surface of 3 basins. In the next paper, sediment contamination will show how to evaluate in Estuarine habitats of these downstream.

  • PDF

하천관개지역 광역논에서의 영양물질의 물질수지 (Nutrient Balance in the Paddy Fields Watershed with a Source of River Water)

  • 이정범;이재용;이사굉;장정렬;장익근;김진수
    • 한국농공학회논문집
    • /
    • 제56권5호
    • /
    • pp.11-19
    • /
    • 2014
  • The objective of this research was to investigate concentration and load of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in a 23.4-ha paddy fields watershed with river water source. Water samples for irrigation water, drainage water, ponded water and groundwater were collected, and irrigation and drainage water were measured at 5~10 day intervals during normal days and at 2~6 hours intervals during three storm events. The amount of irrigation water in the study area was over 2,000 mm, which is almost identical to that in the area irrigated from a large reservoir but much more than that in the area irrigated from a pumping station. Mean flow-weighted concentrations of TN and TP in irrigation water were 2.8 and 0.15 mg/L, respectively, higher than those in the area irrigated from a large reservoir or a pumping station. The ratios of irrigation load to total inflow load for TN and TP were 88 %, and the ratios of surface outflow load to total outflow load for TN and TP were over 90 %, indicating that total nutrient load may be greatly affected by water management. The nutrient loads per area in the study area were estimated as TN 21.1 kg/ha and TP 1.1 kg/ha. Especially, the TP load per area in the study area was smaller than that in the area irrigated from a large reservoir or a pumping station. This may be because outflow load is not high likely due to sedimentation of particulate P and irrigation water load is high due to high TP concentration in irrigation water and high amount of irrigation water.

Nutrient production from Korean poultry and loading estimations for cropland

  • Won, Seunggun;Ahmed, Naveed;You, Byung-Gu;Shim, Soomin;Kim, Seung-Su;Ra, Changsix
    • Journal of Animal Science and Technology
    • /
    • 제60권2호
    • /
    • pp.3.1-3.9
    • /
    • 2018
  • Background: Poultry breeding has increased by 306% in Korea, inevitably increasing the production of manure which may contribute to environmental pollution. The nutrients (NP) in the manure are essential for crop cultivation and soil fertility when applied as compost. Excess nutrients from manure can be accumulated on the land and can lead to eutrophication. Therefore, a nutrient load on the finite land should be calculated. Methods: This study calculates the nutrient production from Korean poultry by investigating 11 broiler and 16 laying hen farms. The broiler manure was composted using deep litter composting while for layer deep litter composting, drying, and simple static pile were in practice. The effect of weight reduction and storing period during composting was checked. Three weight reduction cases of compost were constructed to calculate nutrient loading coefficients (NLCs) using data from; i) farm investigation, ii) theoretical P changes (${\Delta}P=0$), and iii) dry basis. Results: During farm investigation of broiler and layer with deep litter composting, there was a 68 and 21% N loss whereas 77 and 33% P loss was found, respectively. In case of layer composting, a loss of 10-56% N and a 52% P loss was observed. Drying manure increased the P concentrations therefore NLCs calculated using dry basis that showed quite higher reductions (67% N; 53% P). Nutrient loss from farm investigation was much higher than reported by Korean Ministry of Environment (ME). Conclusions: Nutrients in manure are decreased when undergo storing or composting process due to microbial action, drying, and leaching. The nutrient load applied to soil is less than the fresh manure, hence the livestock manure management and conservation of environment would be facilitated.

서울 일부지역 여자 고등학생의 식품 및 영양소섭취, Glycemic Index, Glycemic Load와 비만도와의 관련성 연구 (The Relationship between Food and Nutrient Intakes, Glycemic Index, Glycemic Load, and Body Mass Index among High School Girls in Seoul)

  • 홍희옥;이정숙
    • Journal of Nutrition and Health
    • /
    • 제43권5호
    • /
    • pp.500-512
    • /
    • 2010
  • The relationship between food and nutrient intake, glycemic index (GI), glycemic load (GL), and body weight was investigated with high school girls residing in Seoul. As subjects, 159 girls were divided into a normal weight (NW) group (18.5 kg/$m^2$ $\leq$ BMI < 23 kg/$m^2$, n = 110) and an overweight (OW) group (BMI $\geq$ 23kg/$m^2$, n = 49) by body mass index (BMI). The food and nutrient intake data obtained by the 3-day food record were analyzed by Can pro 3.0 software. Anthropometric measurements were collected from each subject. Daily dietary GI (DGI) and dietary GL (DGL) were calculated from the 3-day food record. Body weights and BMI of NW were 52.4 kg and 20.4 kg/$m^2$ and those of OW were 65.2 kg and 25.4 kg/$m^2$, respectively. Total food, animal food, and other food intakes of NW were higher than those of OW, and vegetable food intakes of NW were lower than those of OW. Sugars intake of NW was significantly higher than OW. Nutrient intakes were not different between the two groups. Dietary fiber, calcium, and folate intakes of NW and OW were under 65% of the dietary reference intakes (DRIs). Major food sources of energy intake for both groups were rice, pizza, ice cream, pork, instant noodle, and chicken. Mean adequacy ratio (MAR), an index of overall dietary quality, was higher in NW (0.82) than in OW (0.80). Mean daily DGI of NW and OW was 66.5 and 66.4, respectively. Mean daily DGL of NW and OW was higher in NW (162.0) than in OW (155.9). DGI and DGL adjusted to energy intake were not significantly correlated with anthropometric data.

주암호 유입 소유역 오염부하 모니터링 (Monitoring of Pollutant load from a Subwatershed in the Jooam lake)

  • 윤광식;최수명;한국헌;조재영
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.475-478
    • /
    • 2001
  • Runoff and nutrient concentrations were monitored to identify pollutant load characteristics of a subwatershed in the Jooam lake. Observed concentrations of T-N and T-P were $1.445{\sim}3.980mg/{\ell}\;and\;0{\sim}0.273mg/{\ell}$, respectively. Runoff load of T-N, T-P by single storm occurred June 24th 2001 contributed 55% of T-N and 41% T-P of total pollutant load during study period.

  • PDF

Nutrient variations from swine manure to agricultural land

  • Won, Seunggun;You, Byung-Gu;Shim, Soomin;Ahmed, Naveed;Choi, Yoon-Seok;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권5호
    • /
    • pp.763-772
    • /
    • 2018
  • Objective: Swine manure in Korea is separated into solid and liquid phases which are composted separately and then applied on land. The nutrient accumulation in soil has been a big issue in Korea but the basic investigation about nutrient input on arable land has not been achieved in detail. Within the nutrient production from livestock at the national level, most values are calculated by multiplication of the number of animals with the excreta unit per animal. However, the actual amount of nutrients from swine manure may be totally different with the nutrients applied to soil since livestock breeding systems are not the same with each country. Methods: This study investigated 15 farms producing solid compost and 14 farms producing liquid compost. Composting for solid phase used the Turning+Aeration (TA) or Turning (T) only methods, while liquid phase aeration composting was achieved by continuous (CA), intermittent (IA), or no aeration (NA). Three scenarios were constructed for investigating solid compost: i) farm investigation, ii) reference study, and iii) theoretical P changes (${\Delta}P=0$), whereas an experiment for water evaporation was conducted for analyzing liquid compost. Results: In farm investigation, weight loss rates of 62% and 63% were obtained for TA and T, respectively, while evaporation rates for liquid compost were 8.75, 7.27, and $5.14L/m^2{\cdot}d$ for CA, IA, and NA, respectively. Farm investigation provided with the combined nutrient load (solid+liquid) of VS, N, and P of 117.6, 7.2, and $2.7kg/head{\cdot}yr$. Nutrient load calculated from farm investigation is about two times higher than the calculated with reference documents. Conclusion: The nutrient loading coefficients from one swine (solid+liquid) were (volatile solids, 0.79; nitrogen, 0.53; phosphorus, 0.71) with nutrient loss of 21%, 47%, and 29%, respectively. The nutrient count from livestock manure using the excretion unit has probably been overestimated without consideration of the nutrient loss.

유량-부하량 관계식을 이용한 용담호 유입하천의 영양염류 유입량 변동특성 (Variational Characteristics of Nutrient Loading in Inflow Streams of the Yongdam Reservoir Using Flow-Loading Equation)

  • 김태근
    • 환경영향평가
    • /
    • 제15권2호
    • /
    • pp.129-138
    • /
    • 2006
  • The measurements of nutrient and runoff in 4 streams have been performed before and after the rainfall in order to estimate nutrient loads in the Yongdam reservoir. The equations for the relationship between the flow and the loads in each stream could be estimated by the regression analysis. R2 of TN showed the range from 0.95 to 0.99 and the range of R2 for TP was 0.90~0.95 based on the results of the regression analyses. In 2002, total loadings from the upstream to the Yongdam reservoir were TN 1,175 ton/year, TP 69 ton/year. There were 64.9% of TN and 72.3% of TP during 4 months as the flood season. Due to the rainfall, the load of TP was higher than one of TN in Yongdam reservoir.