• Title/Summary/Keyword: total magnetic field

Search Result 199, Processing Time 0.025 seconds

3D Magnetic Field Analysis of Superconducting Rotary Machine by Using Analytical Method (해석적 방법을 이용한 초전도 회전기의 3차원 자계 해석)

  • Jo, Young-Sik;Seo, Moo-Gyo;Baik, Sung-Kyu;Kim, Seog-Whan;Sohn, Myung-Whan;Kwon, Young-Kil;Lee, Jung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.616-618
    • /
    • 2002
  • A Superconducting Rotary Machine (SRM) is characterized by an air-cored machine with its rotor iron and stator iron teeth removed. For this reason, the SRM is featured by 3D magnetic flux distribution, which decreases in the direction of axis, Therefore, 3D magnetic field analysis method is required to know about characteristic of magnetic field distribution of SRM, In this paper, 3D flux distribution of SRM is calculation by using analytical method. The magnetic field distribution due to the field coils use of the Biot-Savart equation. The magnetic core is represented by magnetic surface polarities. The paper describes the combined use of above methods for the total computation, and compares analytical method and 3D FEM(Finite Element Method) results.

  • PDF

전자기 성형에서의 테이퍼진 지속집중기의 자기압력에 관한 연구

  • Choe, Jae-Chan;Jo, Yong-Cheol;Lee, Jong-Su;Hwang, Un-Seok;Kim, Nam-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.14-27
    • /
    • 1990
  • Electromagnetic Pulse Forming is the one of the high velocity forming method. When the electric energy which is charged in the capacitor bank is suddenly discharged into the electromagnetic coil, the high magnetic field occurs at the airgap between the electromagnetic coil and workpiece. Thus we can obtain the high electromagnetic pressure, which is proportional to the square of magnetic flux density. This is the basic principle of the electromagnetic pulse forming. In this paper, the equivalent L-R-C circuit is derived by computing the magnetic field and its loss of the total system. Thus, the values of the magnetic flux density and pressure can be obtained from the equation of this circuit. As a result, the computed and measured values of the maximum magnetic flux density and pressure are compared and the characteristics of the tapered field shaper are further discussed as follows; 1) The strength of magnetic flux density and pressure can be controlled by the charged energy and the size of the airgap between the inner field shaper and the workpiece. 2) During the design of the tapered field shaper, the penetration of the magnetic flux through the sharp edge should be considered.

  • PDF

3-D Magnetostatic Field Analysis Using Boundary Element Method (경계요소법을 이용한 3차원 정자장 해석)

  • 전기억;고창섭;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1211-1217
    • /
    • 1991
  • A three dimensional magnetostatic probodm is analyzed using the boundary element method and the magnetic scalar potential are employed in order to reduce the size of system matrix. Although the total magnetic scalar potential gives very accurate solutions at inner and outer regions of magnetic materal, the method has limitation on application because the magnetic scalar potential due to applied magnetic field sources is hard to be obtained. The reduced magnetic scalar potential gives more or less inaccurate solutions inside the magnetic material but very accurate solutions outside. Hence it can be concluded that the reduced magnetic scalar potential is very useful when the magnetic fields of outside of magnetic fields of outside of magnetic material are interested. It is also shown, from the numerical example, that the linear shape function gives more efficient solutions than the constant shape functions.

  • PDF

Analysis of Self Magnetic Field Effects in a Bi-2223 Stacked Superconducting Bus Bar (Bi계 고온 초전도 선재 부스바에서의 자기 자장 해석)

  • Kang, Hyoung-Ku;Nah, Wan-Soo;Joo, Jin-Ho;Yoo, Jai-Moo;Oh, Sang-Soo;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.302-304
    • /
    • 1998
  • Self magnetic field in a Bus bar usually degrades the critical current in it. Actually the total critical current of a Bus bar is not the same as the sum of total critical current of each stacked HTS tape. This is due to the self field effects in a bus bar. To reduce the degradations of critical current in a bus bar, we need to analyze the self field distributions in a bus bar. Conceptually, by rearranging the each stacked tapes, the self field effects can be minimized. In this paper, we calculate the self magnetic field distributions across a bus bar analytically, with the variations of the relative angle of the two conductors in a go-and-return pair. As a result, we suggest that the optimum relative angle exist which minimize the self field effect in a bus bar.

  • PDF

Core Losses of Amorphous Fe-B-Si Alloy for Transformer Core (변압기 철심용 Fe-B-Si비정질 합금의 철손 특성)

  • 김기욱;송재성;홍진완;강원구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.67-72
    • /
    • 1991
  • For improving the magnetic properties of the amorphous Fe-B-Si alloy, we annealed the sample in a magnetic field oriented in the plane of the ribbon longitudinal to its long axis. By field annealing, coercive force and total core loss are reduced from 0.04 Oe to 0.02 Oe, and from 0.25 watt/kg to 0.15 watt/kg respectively in comparsion with non-field annealed specimen. These reductions were caused by the formation of 180 dcmain wall parallel to the annealing field due to the induced anisotropy.

Experiment on Small A.C. MHD Power Generator (소용량 교류 MHD발전기에 대한 실험적 연구)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.25 no.5
    • /
    • pp.79-87
    • /
    • 1976
  • This paper is to investigate the A.C generation of MHD engine, converting directly the kinetic energy of conductive gas in high temperature to electric power by the effect of magnetic field. It is known that there are at least two kinds of method in A.C MHD power generation; one, by sending stationary plasma flow in an alternating or rotating magnetic field and the other, by transmission of pulse type plasma flow in uniform and constant magnetic field, former method is adopted here. In order to raise the total efficiency of close cycle in combination with nuclear power and MHD genertaion, an argon plasma jet is utilized as heat source, which is not mixed with the seed material, and the design data are obtained for A.C MHD generation in small capacity, but induced voltage and power output have the maximum values, 15 voltages and 7.5W respectively due to plasma flow with low conductivity and weak magnetic field.

  • PDF

Electro-magnetic Field Analysis of 2-Layer HTS Power Transmission Cable Core (2층 고온초전도 전력케이블 코어의 전자장 해석)

  • 조전욱;주진홍;김석환;배준한;김해종;김해준;성기철;홍정표
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.269-271
    • /
    • 2003
  • A typical HTS power transmission cable has multi-layer conductor structure to increase the current capacity. The tapes of the innermost layer are wound on a round former, and adjacent tapes of another layer are separated by a thin insulating film. In steady state, the total current flows in the conductor layer, and consequently there is magnetic field between the inner and outer layer. This paper describes a magnetic field amplitude around the conductor layer and the HTS tape by a transport current. Also, this paper will help for future cable conductor prototypes.

  • PDF

Technique of magnetic survey for UXO discrimination (UXO(Unexploded Ordnance) 탐지를 위한 자력탐사 기술)

  • Park, In-Seok;Kim, Hyun-Do;Kim, Jin-Hoo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.158-159
    • /
    • 2005
  • The paper presents a method for location of subsurface UXOs. The approach utilities gradient interpretation techniques (analytic signal, horizontal gradient and Euler methods) to locate the objects. Then, linear least-squares technique, we obtain the magnetization location of the sources. We demonstrate the practical utility of the method using marine magnetic field data.

  • PDF

Enhanced Exchange Coupling of $Nd_2Fe_{14}B/Fe_3B$ Magnet Via Magnetic Field Treatment

  • Choong Jin Yang;Con Byung Park
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.31-36
    • /
    • 1996
  • An externally applied magnetic field during heat treating the $Nd_2Fe_{14}B/Fe_3B$ based spring magnet was found to enhance the exchange coupling between the hard and soft magnetic grains. More than 30% increase in $M_r/M_s$ values for melt-spun $Nd_2Fe_{73.5}Co_3$$(Hf_{1-x}Ga_x)B_{18.5}$ (x=0, 0.5, 1) alloys was resulted from a uniform distribution of $Fe_3B, \alpha-Fe$ and $Nd_2Fe_{14}B$ phases, and also from a reduced grain size of those phases by 20%. The externally applied magnetic field induced a uniform distribution of fine grains. A study of Mossbauer effect also report that the enhancement of total magnetization of nanocomposite $Nd_2Fe_{14}B/Fe_3B$ alloys is attributed to an increased formation of $Fe_3$B after magnetic annealing.

  • PDF

A Study on the Magnetic Field Intensity and BER from Wayside Device to On-board Device about the Train Speed in ATP System (ATP 시스템에서 열차속도에 따른 지상자에서 차상자까지의 자계의 세기 및 비트오류율에 관한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1803-1808
    • /
    • 2010
  • Electric railway system consists of rolling stock, track, signal and catenary system. ATP system in railway signaling system is the important one grasping the position and velocity of a train. The wayside device of ATP system is installed between rails. Recently, the research about increasing train speed has been developed in total departments of the railroad systems. The study on the information transmission between on-board device and wayside device is required for increasing the train speed in the ATP system. When the train speed is increased as to same transmission distance, the problem on information transmission occurs because the transmission time is decreased. In case that the transmission distance is extended, the transmission time is decreased with respect to the train speed. Therefore, we have to define the standard magnetic field intensity as to the train speed in order to transmit correctly telegram. In this paper, the transmission distance for the telegram is suggested on the basis of the train speed. Also, the standard magnetic field intensity from the wayside device to on-board device is proposed by using transmission distance regarding the train speed in the ERTMS/ETCS system by using Matlab program. Also, BER according to the train speed is presented by calculating electric field intensity from the magnetic field intensity.