• Title/Summary/Keyword: total load management

Search Result 415, Processing Time 0.025 seconds

Influence Analysis of Temporal Continuity Change of Flow Data on Load Duration Curve (유량자료의 시간적 연속성 변화가 오염부하지속곡선에 미치는 영향 비교 분석)

  • Kwon, Pil Ju;Han, Jeong Ho;Ryu, Ji chul;Kim, Hong Tae;Lim, Kyoung Jae;Kim, Jong Gun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.394-402
    • /
    • 2017
  • In korea, TMDL is being implemented to manage nonpoint pollution sources as well as point pollution sources. LDC is being used for the planning of TMDL. In order to analyze the water quality using LDC, it is necessary to prepare FDC using the daily flow data. However, only the daily flow data is measured at the WAMIS branch, and 8days flow data and water quality data are measured at the monitoring Networks. So, in many researches, the water quality is being grasped by deriving the LDC using the 8days flow or the daily flow obtained by various methods. These fluctuations may lead to differences in determining whether the target load is achieved. In this study, each LDC was prepared using the 8day flow and the related daily flow. Then, the effect using different flow data on the achievement of target load was compared according to flow conditions. As a result, the difference ratio in the number of overloads under flow condition was showed 19% in high flows, 42% in moist conditions, 49% in mid-range flows, 41% in dry conditions, and 104% in low flows. In the top ten watershed with the highest difference ratio, the flow became lower the difference ration increases. These differences can cause uncertainty in assessing the achievement of target load using LDC. Therefore, in order to evaluate the water quality accurately and reliably using LDC, accurate daily flow data and water quality data should be secured through the installation of national nonpoint measurement network.

A Study on the Application of Total Pollution Load Management System for Water Quality Improvement in Agriculture Reservoir (농업용 호소의 수질개선을 위한 오염총량관리제의 적용에 관한 연구)

  • Oh, Dae-Min;Lee, Young-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.365-375
    • /
    • 2009
  • Agriculture reservoirs need a systematic approach that can control water purity and water improvement. The area under study, Bunam Lake exceeds the agricultural water standard level due to contamination from the upper stream. When the Taean Enterprise City was planned, the water quality improvement plan was applied to minimize the environmental change. However, in order to continuously maintain the water quality in the Bunam Lake, it was essential to apply the Total Pollution Load Management System (TPLMs). In order to achieve the targeted water quality in the Bunam Lake, standard flow rates and targeted water quality levels were applied to obtain the loading capacity which is as follows : BOD 1,891.2 kg/d, T-N 1,945.7 kg/d, T-P 131.7 kg/d. Also, the regional development load was calculated as, BOD 1,083.6 kg/d, T-N 942.2 kg/d, T-P 61.8 kg/d, which is required to be deceased :- by BOD 378.4 kg/d, T-N 198.9 kg/d, T-P 31.6 kg/d in order to safely achieve the targeted water quality in the Bunam Lake.

Characteristics of Pollutant Loading from Paddy Field Area with Groundwater Irrigation (지하수 관개지역 논에서의 배출부하 특성)

  • 윤춘경;김병희;전지홍;황하선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.116-126
    • /
    • 2002
  • Discharge pattern and water quality were investigated in the drainage water from about 10 ha of groundwater-irrigated paddy field in the growing season of 2001. Total discharge quantity was about 1,117.2 mm in which about 75% was caused by management drainage due to cultural practice of paddy rice farming and the rest by rainfall runoff where total rainfall was about 515 mm. Dry-day sampling data showed wide variations in constituent concentrations with average of 26.14 mg/L, 0.37 mg/L, 3.54 mg/L at the inlet, and 43.60 mg/L, 0.34 mg/L, 3.58 mg/L at the outlet for CO $D_{cr}$ , T-P, and T-N, respectively. Wet-day sampling data demonstrated that generally CO $D_{cr}$ followed the discharge pattern and T-P was in opposite to the discharge pattern, but T-N did not show apparent pattern to the discharge. Discharge and load are in strong relationship. And based on regression equation, pollutant loads from groundwater irrigation area are estimated to be 288.34, 1.17, and 5.45 kg/ha for CO $D_{cr}$ , T-P, and T-N, respectively, which was relatively lower than the literature value from surface water irrigation area which implies that groundwater irrigation area might use less irrigation water and result in less drainage water, Therefore, total pollutant load from paddies irrigation with groundwater could be significantly lower than that with surface water. This study shows that agricultural drainage water management needs a good care of drainage outlet as well as rainfall runoff. This study was based on limited monitoring data of one year, and further monitoring and successive analysis are recommended for more generalized conclusion.

Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin (낙동강 유역의 수질관리를 위한 유역모델링 적용 연구)

  • Jang, Jae-Ho;Ahn, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

LIDMOD Development for Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads (지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Low impact development (LID) technique is relatively new concept to reduce surface runoff and pollutant loading from land cover by attempting to match predevelopment condition with various integrated management practices (IMPs). In this study, computational model for designing and evaluating LID, named LIDMOD, was developed based on SCS-CN method and applied at Andong bus terminal to evaluate LID applicapability and design retention/detention area for volume or peak flow control. LIDMOD simulated with 21 years simulation period that yearly surface runoff by post-development without LID was significantly higher than that with LID showing about 2.8 times and LID could reduce efficiently yearly surface runoff with 75% reduction of increased runoff by conventional post development. LIDMOD designed detention area for volume/peak flow control with 20.2% of total area by hybrid design. LID can also efficiently reduce pollutant load from land cover. Pollutant loads from post-development without LID was much higher than those from pre-development with showing 37 times for BOD, 2 times for TN, and 9 times for TP. Pollutant loads from post-development with LID represented about 57% of those without LID. Increasing groundwater recharge reducing cooling and heating fee, creating green refuge at building area can be considered as additional benefits of LID. At the point of reducing runoff and pollutant load, LID might be important technique for Korean TMDL and LIDMOD can be useful tool to calculate unit load for the case of LID application.

Nutrient Balance in the Paddy Fields Watershed with a Source of River Water (하천관개지역 광역논에서의 영양물질의 물질수지)

  • Lee, Jeong Beom;Lee, Jae Yong;Li, Si Hong;Jang, Jeong Ryeol;Jang, Ik Geun;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.11-19
    • /
    • 2014
  • The objective of this research was to investigate concentration and load of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in a 23.4-ha paddy fields watershed with river water source. Water samples for irrigation water, drainage water, ponded water and groundwater were collected, and irrigation and drainage water were measured at 5~10 day intervals during normal days and at 2~6 hours intervals during three storm events. The amount of irrigation water in the study area was over 2,000 mm, which is almost identical to that in the area irrigated from a large reservoir but much more than that in the area irrigated from a pumping station. Mean flow-weighted concentrations of TN and TP in irrigation water were 2.8 and 0.15 mg/L, respectively, higher than those in the area irrigated from a large reservoir or a pumping station. The ratios of irrigation load to total inflow load for TN and TP were 88 %, and the ratios of surface outflow load to total outflow load for TN and TP were over 90 %, indicating that total nutrient load may be greatly affected by water management. The nutrient loads per area in the study area were estimated as TN 21.1 kg/ha and TP 1.1 kg/ha. Especially, the TP load per area in the study area was smaller than that in the area irrigated from a large reservoir or a pumping station. This may be because outflow load is not high likely due to sedimentation of particulate P and irrigation water load is high due to high TP concentration in irrigation water and high amount of irrigation water.

A Study on the Estimation Method of Daily Load Curve for the Optimization Design and Economic Evaluation of Stand-alone Microgrids Based on HOMER Simulation in Off-Grid Limiting the Supply of Electricity (제한급전하는 오프그리드의 독립형 마이크로그리드 최적 설계 및 경제성 평가를 위한 일부하곡선 추정 방안에 관한 연구)

  • Nam, Yong-Hyun;Youn, Seok-Min;Kim, Jung-Hoon;Hwang, Sung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • There is a growing interest in various microgrid solutions that supply electricity 24 hours a day to off-grid areas where are not connected with the main grid, and Korea has many positive effects by constructing overseas microgrids as a country operating the emission trading scheme. Since it is not clear how to obtain load curves that is one of the inputs of the HOMER used to design a microgrid optimization plan, or it is necessary to examine whether electricity is supplied to the peak load level of the areas where have not received the electricity benefits from the viewpoint of the demand management, a methodology should be developed to know the load composition ratio and the shape of the daily load curve. In this paper, the relative coefficient and average load information for each load group obtained from the survey are used besides peak load and total average load. A mathematical model is proposed to derive the load composition ratio in the form of a Quadratic Programming and the load forecasting is performed using simple linear regression with future indicators. The effectiveness of the proposed method is confirmed for the Philippine island region supported by Korea Energy Agency and the Asian Development Bank.

Study of the Environment Priority Facility Operation Concept of 500MW Standard Coal Thermal Power Plant (500MW 표준석탄화력발전소의 환경안전우선 설비운영개념 도입방안 고찰)

  • Lee, Kab-Ju;Chung, Jin-Do;Kim, San
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • In korea, 500MW standard coal fired power plants were designed and operated for the initial base load, so facility stability was prioritized from facility problem to treatment, but now we needed to research for minimizing greehouse gas emissions at the operation of coal fired power plants. research on various facilities and technologies was actively conducted to reduce environment pollutants was drastically reduced, but research and attempts on coping measures in the event of a reduction facility problem were in sufficient. this study considered investigated ways to minimized pollutants by quickly responding to logic development and application of the load runback concept in case of serious problems with environmental pollutant reduction facilities such as NOx reduction selective catalytic reduction facilities, SOx reduction wet flue gas desulpherisation facilities, and TSP(Total Suspended Particles) collection low temperature electric precipitator.

Estimating Wildfire Fuel Load of Coarse Woody Debris using National Forest Inventory Data in South Korea

  • Choi, Suwon;Lee, Jongyeol;Han, Seung Hyun;Kim, Seongjun;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.185-191
    • /
    • 2015
  • This study presents an estimate of on-site surface fuel loadings composed of coarse woody debris (CWD) using $5^{th}$ National Forest Inventory (NFI) data in South Korea. We classified CWD data into forest type, region and decay class, and used conversion factors by decay class and tonne of oil equivalent developed in the country. In 2010, the total wildfire fuel load of CWD was estimated as 8.9 million TOE; those of coniferous, deciduous and mixed forests were 3.5 million TOE, 2.8 million TOE and 2.6 million TOE, respectively. Gangwon Province had the highest wildfire fuel load of CWD (2.3 million TOE), whereas Seoul exhibited the lowest wildfire fuel load of CWD (0.02 million TOE). Wildfire fuel loads of CWD were estimated as 2.9 million TOE, 1.9 million TOE, 2.4 million TOE and 1.7 million TOE for decay classes I, II, III and IV, respectively. The total wildfire fuel load of CWD corresponded to the calorific value of 8.2 million tons crude oil, 2.46% of that of living trees. Proportionate to the growing stock, total wildfire fuel load of CWD was in a broad distinction by region, while its TOE $ha^{-1}$ was not. This implies that there is no need to establish different guidelines by region for management of CWD. The results of this work provide a baseline study for scientific policy guidelines on preventing wildfires by proposing CWD as wildfire fuel load.

Modeling the Effects of Low Impact Development on Runoff and Pollutant Loads from an Apartment Complex

  • Jeon, Ji-Hong;Lim, Kyoung-Jae;Choi, Dong-Hyuk;Kim, Tae-Dong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • The effects of low impact development (LID) techniques, such as green roofs and porous pavements, on the runoff and pollutant load from an apartment complex were simulated using the Site Evaluation Tool (SET). The study site was the Olympic Village, a preexisting apartment complex in Seoul, South Korea, which has a high percentage of impervious surfaces (approximately 72% of the total area). Using the SET, the effects of replacing parking lots, sidewalks and driveways (37.5% of the total area) having porous pavements and rooftops (14.5% of the total area) with green roofs were simulated. The simulation results indicated that LID techniques reduced the surface runoff, and peak flow and pollutant load, and increased the evapotranspiration and soil infiltration of precipitation. Per unit area, the green roofs were better than the porous pavements at reducing the surface runoff and pollutant loads, while the porous pavements were better than green roofs at enhancing the infiltration to soil. This study showed that LID methods can be useful for urban stormwater management and that the SET is a useful tool for evaluating the effects of LID on urban hydrology and pollutant loads from various land covers.