This study was done for the determination of ginsenosides contents of Korean ginseng and ginseng products as well as the development of analytical method for ginsenosides. It is known that perfect segregation of ginsenoside Rg and Re is not easy, but in this study almost perfect segregation can be possible by the control of concentration between acetonitrile and water. Among Korean ginseng, ginseng powdered tea and red ginseng powdered tea, the highest ginsenosides content of sum of each 7 kind o ginsenoside was found in red ginseng powdered tae as 23,211${\mu}g$ per 1g/dw The ginsenoside content of ginseng powdered tea was lower than red ginseng powdered tea as 15,217${\mu}g$ per 1g/dw Total ginsenoside content in the root of ginseng was 29,268${\mu}g$ per 1/dw Each amount of ginsenoside contained in ginseng root was in the order of Rb1, Rg1, and Rc. It was shown that there was difference in constitutional element of ginsenosides in ginseng powdered tea and ginseng root.
인삼사포닌 정량분석의 상법 purification과정을 역상소형 $C_18$ 컬럼 전처리로 대체할 수 있었으며, 분석시간은 1/4로 단축되었다. 이 방법을 사용하면 total ginsenoside의 회수율은 높으나 protopanaxatriol계 ginsenoside들의 회수율은 약간 낮았으며, 근중 농도 정도의 당류는 ginsenoside 회수율에 영향을 미치지 않았다. Ginsenoside 회수율의 변이계수는 상법의 경우보다 작았으며 이 방법에 사용되는 ginsenoside의 적정량은 10~15mg이었다. 역상소형컬럼방법은 건삼과 홍삼시료처리시에도 상법과 고도의 유의성을 나타냈다. 신속 역상소형컬럼 방법을 실제로 이용하기 위하여 8점의 시료를 동시에 처리하는 소형아크릴 장치를 사용하였다.
Considering the stimulatory effects of ginsenosides from Panax ginseng C. A. Meyer on the release of nitric oxide from bovine aortic endothelial cells in vitro and vasodilatation of rabbit pulmonary artery in vivo, the present study is designed to investigate the mechanism of nitric oxide release by ginsenosides in calf pulmonary artery endothelial cells, Nitric oxide release was determined in endothelial cells treated with ginsenosides and compared with those of the receptor-dependent agonists, bradykinin and ADP and the receptor-independent calcium ionophore $A_{23187}$. The results showed that total saponin and ginsenoside $Rg_1$, not $Rb_1$, stimulated nitric oxide release measured as conversion to L-citrulline. The nitric oxide releasing properties of total saponin and ginsenoside $Rg_1$ were different; total saponin stimulated only conversion to L-citrulline, like $A_{23187}$, while ginsenoside $Rg_1$ stimulated both L-arginine transport and conversion to L-citrulline, as bradykinin or ADP did.
To improve the yield of genuine aglycones from glycosides, the conditions of alkaline hydrolysis were investigated, and a modified method was established. The modified method empolyed pyridine as an aprotic solvent. To complete the hydrolysis and obtain 20(S)-protopanaxadiol (1) and 20(S)-protopanaxatriol(2), which are the genuine aglycones of ginsenosides, total ginsenosides were refluxed with sodium methoxide in pyridine. Addition of methanol, a protic polar solvent to the reaction miuxture, led partial hydrolysis yielding a mixture of the genuine prosapogenols. Of the prosapogenols compound 3 and 6 characteristically possessed D-glucopyranosyl moiety attached at the sterically hindered C-20 hydroxyl group. 3 and 6 were not obtaijned by other hydrolysisw methods except by the soil bacterial hydrolysis.
Kim, Hyun Soo;Kim, Gyu Ri;Kim, Donghyun;Zhang, Cheng-Yi;Lee, Eun-Soo;Park, Nok Hyun;Park, Junseong;Lee, Chang Seok;Shin, Moon Sam
Journal of Plant Biotechnology
/
제46권1호
/
pp.56-60
/
2019
Ginsenosides are active constituents of ginseng (Panax ginseng) that have possible anti-aging, physiological and pharmacological activities, such as anti-cancer and anti-inflammatory effects. Although the ginseng root is generally used more often than the aerial parts for medicinal purposes, the flowers also contain numerous ginsenosides, including Rb2, Rc, Rd, Re and Rg1. Therefore, an extract from the flowers of the P. ginseng could have the pharmacological efficacy of bioactive compounds including ginsenosides. The high hydrostatic pressure extraction (HHPE) is a method that is used for the efficient extraction of bioactive compounds from plant materials. In this study, we compared the yield of ginsenosides from ginseng flowers under different conditions of extraction pressure and time of HHPE. The results indicate that the total yield of the ginsenosides improved as the pressure increased from 0.1 to 80 MPa and treatment duration increased to 24 hours. In addition, the ginsenoside extracts from HHPE at 80 MPa, which possessed a higher total ginsenoside concentration, decreased the viability of the primary human epidermal keratinocytes (HEKs) significantly than the ginsenoside extracts from HHPE at 0.1 MPa. Collectively, we found that the method of HHPE that was performed for 24 hours at 80 MPa showed the highest yield of ginsenosides from the flowers of P. ginseng. In addition, our study provides a foundation for the efficient extraction of ginsenosides, which had a potent bioactivity, from flowers of P. ginseng through HHPE.
We aimed to compare the content of ginsenosides and the pharmacokinetics after the oral administration of four different ginseng products at a dose of 1 g/kg in rats. The four different ginseng products were fresh ginseng extract, red ginseng extract, white ginseng extract, and saponin enriched white ginseng extract prepared from the radix of Panax ginseng C.A. Meyer. The ginsenoside concentrations in the ginseng product and the rat plasma samples were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eight or nine ginsenosides of the 15 tested ginsenosides were detected; however, the content and total ginsenosides varied depending on the preparation method. Moreover, the content of triglycosylated ginsenosides was higher than that of diglycosylated ginsenosides, and deglycosylated ginsenosides were not present in any preparation. After the single oral administrations of four different ginseng products in rats, only four ginsenosides, such as 20(S)-ginsenosides Rb1 (GRb1), GRb2, GRc, and GRd, were detected in the rat plasma samples among the 15 ginsenosides tested. The plasma concentrations of GRb1, GRb2, GRc, and GRd were different depends on the preparation method but pharmacokinetic features of the four ginseng products were similar. In conclusion, a good correlation between the area under the concentration curve and the content of GRb1, GRb2, and GRc, but not GRd, in the ginseng products was identified and it might be the result of their higher content and intestinal biotransformation of the ginseng product.
Rice wine (makgeolli) containing various amounts of mountain ginsengs (MG) are being prepared with nuruk and yeasts, and the physicochemical characteristics and contents of ginsenosides in MG-makgeolli were analyzed. Average particle size of MG powder is $29.1{\mu}m$. MG slice (20 g) or powder (0~20 g) and rice (3,000 g) were used for 12 days fermentation of makgeolli, makgeolli containing slice of MG (SW-makgeolli), makgeolli containing 2 g (PW1-makgeolli), 10 g (PW2- makgeolli), 20 g (PW3-makgeolli) of powder of MG, respectively. Soluble solids and pH levels show no differences between five kinds of makgeolli groups, whilst the presence of high amounts of MG (PW3-makgeolli) caused decreases in ethanol and acidity. Major free amino acids in MG-makgeolli are glutamic acid and arginine. Total contents of 14 ginsenosides are approximately 2.5 g/100 g of dried MG powder and major ginsenoside were ginsenosides Re, Rb1, Rb2, Rg1, Rc and Rf. During the propagation of makgeolli containing MG, the ginsenosides Rb1, Rb2, Rb3, and Rc decreased, whilst ginsenosides Rg3 and compound K increased highly. It indicates that ginsenosides in MG are metabolized to different forms of ginsenosides by brewing microorganisms.
Jackson, Chung Ja C.;Dini, Jean-Paul;Lavandier, Clara;Faulkner, Harold;Rupasinghe, H.P. vasantha;Proctor, John T.A.
Journal of Ginseng Research
/
제27권3호
/
pp.135-140
/
2003
North American ginseng (Panax quinquefolius L.) was analysed for total ginsenosides and ten major ginsenosides (R$_{0}$ , Rb$_1$, Rb$_2$, Rc, Rd, Re, Rf, Rg$_1$, pseudoginsenoside F$_{11}$ and gypenoside XVII), and variations in ginsenoside content with age of plant (over a four-year-period) and geographic location (Ontario versus British Columbia) were investigated. In the roots the total ginsenoside content increased with age up to 58-100 mgㆍg$^{-1}$ dry weights in the fourth year, but in leaves it remained constant over time. Roots and leaves, moreover, had different proportions of individual ginsenosides. The most abundant ginsenosides were Rb$_1$ (56mgㆍg$^{-1}$ for Ontario; 37mgㆍg$^{-1}$ for British Columbia) and Re (21mgㆍg$^{-1}$ for Ontario; 15 mgㆍg$^{-1}$ for British Columbia) in roots, and Rd (28-38 mgㆍg$^{-1}$ ), Re (20-25 mgㆍg$^{-1}$ ), and Rb$_2$ (13-19 mgㆍg$^{-1}$ ) in leaves. Measurable quantities of Rf were found in leaves (0.4-1.8 mgㆍg$^{-1}$ ) but not in roots or stems. Our results show that ginsenoside profiles in general, and Rf in particular, could be used for chemical fingerprinting to distinguish the different parts of the ginseng plant, and that ginseng leaves could be valuable sources of the ginsenosides Rd, Re, and Rb$_2$.
Seasonal ginsenoside flux in the leaves of 5-year-old Panax ginseng was analyzed from the field-grown ginseng, for the first time, to study possible biosynthesis and translocation of ginsenosides. The concentrations of nine major ginsenosides, Rg1, Re, Rh1, Rg2, R-Rh1, Rb1, Rc, Rb2, and Rd, were determined by UHPLC during the growth in between April and November. It was confirmed total ginsenoside content in the dried ginseng leaves was much higher than the roots by several folds whereas the composition of ginsenosides was different from the roots. The ginsenoside flux was affected by ginseng growth. It quickly increased to 10.99±0.15 (dry wt%) in April and dropped to 6.41±0.14% in May. Then, it slowly increased to 9.71±0.14% in August and maintained until October. Ginsenoside Re was most abundant in the leaf of P. ginseng, followed by Rd and Rg1. Ginsenosides Rf and Ro were not detected from the leaf. When compared to the previously reported root data, ginsenosides in the leaf appeared to be translocated to the root, especially in the early vegetative stage even though the metabolite translocated cannot be specified. The flux of ginsenoside R-Rh1 was similar to the other (20S)-PPT ginsenosides. When the compositional changes of each ginsenoside in the leaf was analyzed, complementary relationship was observed from ginsenoside Rg1 and Re, as well as from ginsenoside Rd and Rb1+Rc. Accordingly, ginsenoside Re in the leaf was proposed to be synthesized from ginsenoside Rg1. Similarly, ginsenosides Rb1 and Rc were proposed to be synthesized from Rd.
In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.