• 제목/요약/키워드: total ginsenoside

검색결과 368건 처리시간 0.025초

인삼의 강장효과에 관한 연구 - 백서 심장에 대한 인삼사포닌의 효과 (A Study on the Tonic Effects of Ginseng - Effects of Ginseng Saponins on the Rat Heart)

  • 김낙두;김충규;김봉기;한병훈;이상섭
    • 약학회지
    • /
    • 제24권1호
    • /
    • pp.15-25
    • /
    • 1980
  • The investigation is concerned with the action of ginseng saponin on the contractile force in the rat heart and with the elucidation of the mechanism of the action. The effect of total ginseng saponin, ginsenoside Rb$_{1}$ of protopanaxadiol derivatives and ginsenoside Re of protopanaxatriol derivatives on the contractile force in isolated spontaneously beating normal rat heart was investigated. Total ginseng saponin was obtained from white ginseng by the method of Shibata and Namba. Ginsenoside Rb$_{1}$ and ginsenoside Re were isolated by the method of and Han, respectively. Total ginseng saponin exhibited a slight increase of the contractile force. Ginsenoside Rb$_{1}$ increased markedly the contractile force and dose dependent increase in contractile force was observed. However, ginsenoside Re did not increase the contractile force, but it prevented spontaneous decrease of the contractility of the heart. The mixture of the same dose of ginsenoside Rb$_{1}$ and Re showed a slight increase in the contractile force and its effect was similar to that obtained by total ginseng saponin. Pretreatment with propranolol abolished the positive inotropic effect of ginsenoside Rb$_{1}$ and the positive inotropic effect of ginsenoside Rb$_{1}$ was not observed in a reserpinized rat heart. Pretreatment with ginsenoside Re decreased or abolished the positive inotropic effect of epinephrine. Activities of Na+, K+ -ATPase were inhibited by ginsenoside Rb$_{1}$, total ginseng saponin and ginsenoside Re and these inhibitory effects were dose dependent. The results suggest that catecholamine release or inhibition of Na+, K+ -ATPase activities may be involved in the positive inotropic effect of gindenoside Rb$_{1}$. Ginsenoside Re counteracted the positive inotropic effect of ginsenoside Rb$_{1}$.

  • PDF

Rhizopus japonicus의 효소(酵素)에 의한 인삼(人蔘) 사포닌의 선택적(選擇的) 전환(轉換) (Specific Conversion of Ginseng Saponin by the Enzyme of Rhizopus japonicus)

  • 김상달;서정훈
    • 한국균학회지
    • /
    • 제14권3호
    • /
    • pp.195-200
    • /
    • 1986
  • Rhizopus japonicus의 한 균주가 생산하는 효소에 의해 인삼 사포닌의 ginsenoside 중 조성비율이 가장 큰 ginsenoside $Rb_1$을 약리 효능면에서 보다 우수한 ginseuoside $Rb_1$로 선택적으로 전환할 수 있음을 TLC 및 HPLC로 정량적으로 확인하였다. Total saponin을 기질로 사용하였을 경우 ginsenoside $Rb_1$은 그 함량의 82.5%까지 ginsenoside Rd로 전환되어 ginsenoside Rd의 함량을 원래 함량에 비해 4.75배까지 증가시킬 수 있었으며, ginsenoside-Rb group saponin 기질의 경우는 80.8%의 ginsenoside $Rb_1$이 ginsenoside Rd로 전환되어 ginsenoside Rd의 함량을 34.7배까지 처리효소의 농도에 비례해서 증가시킬 수 있었다. 한편 다른 ginsenoside 함량변화 없이 오직 ginsenoside $Rb_1$에서 ginsenoside Rd만으로 선택적 전환을 한다는 사실이 당이나 sapogenin의 검출로도 증명되었다.

  • PDF

Rhizopus sp.가 생산하는 효소에 의한 인삼 Saponin의 전환 (제1보) Ginsenoside-Rb$_1$에서 Ginsenoside-Rd로의 전환확인 (Conversion of Ginseng Saponin with the Enzyme Produced by Rhizopus sp. (Part 1) Confirmation of Conversion of Ginsenoside- Rb$_1$to Ginsenoside-Rd)

  • 김상달;서정훈
    • 한국미생물·생명공학회지
    • /
    • 제10권4호
    • /
    • pp.267-273
    • /
    • 1982
  • 미생물성 효소를 이용하여 인삼saponin중 조성비율이 가장 큰 ginsenoside-Rb$_1$을 약효면에서 보다 우수한 ginsenoside-Rd로 전환하고자 인삼부패균 중 Rhizopus 속의 한 균주를 선정하여 이 균주에서 얻은 효소를 ammonium sulfate 분별 침전법으로 조정제하여 사용하였다. 기질로 사용하기 위해 홍미삼 extract로부터 ginsenoside-Rb$_1$이 36.4%, ginsenoside-Rd 가 12.2%의 조성비율을 갖인 total saponin을 정제하였고 이어 ginsenoside-Rb$_1$의 함량을 증가시키기 위해 더욱 정제한 결과 ginsenoside-Rb$_1$이 54. 5%, ginsenoside-Rd가 1.1%인 ginsenoside Rb group saponin을 얻었다. 이들 기질 saponin에 본 효소를 작용시켜 본 결과 두 기질 모두 다른 ginsenoside pattern에는 변화없이 ginsenoside-Rb$_1$만이 선택적으로 감소하고 반면에 ginsenoside-Rd의 함량이 비례적으로 증가됨을 TLC 및 HPLC의 방법으로 조사하였으며 이로써 효소에 의한 인삼saponin의 선택적전환 가능성을 확인하였다.

  • PDF

Analysis of Ginsenoside Composition of Ginseng Berry and Seed

  • Ko, Sung-Kwon;Bae, Hye-Min;Cho, Ok-Sun;Im, Byung-Ok;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1379-1382
    • /
    • 2008
  • This study was performed to provide basic information that can be used to differentiate Korean ginseng (Panax ginseng CA. Meyer) berry and seed from American ginseng (Panax quinquefolium L.) seed. Total ginsenoside contents of Korean ginseng berry, Korean ginseng seed, and American ginseng seed were 9.09, 3.30, and 4.06%, respectively. Total ginsenoside content of Korean ginseng berry was about 2.2 to 2.7 times higher than those of Korean ginseng seed and American ginseng seed. Particularly ginsenoside Re content of 4-year cultivated Korean ginseng berry (5.99%) was about 3.6 to 5.4 times higher than that of 4-year cultivated Korean ginseng seed (1.65%) and 4-year cultivated American ginseng seed (1.10%). The contents of total ginsenoside and ginsenoside Re of Korean ginseng berry were about 4.8 and 28 times higher, respectively, than those of 4-year cultivated Korean ginseng root. In general the contents of total ginsenoside and ginsenoside Re of Korean ginseng berry were significantly higher than those of Korean ginseng seed and American ginseng seed.

인삼잎으로부터 분리된 총사포닌의 부해산물 Monogluco-Cinsenoside의 함암작용 (Anticancer Effect of the Hydrolyzed Monogluco-Ginsenoside of Total Saponin from Ginseng Leaf)

  • 임광식;정해영
    • Journal of Ginseng Research
    • /
    • 제19권3호
    • /
    • pp.291-294
    • /
    • 1995
  • Total saponin was isolated from ginseng leaf, which was hydrolyzed in alkaline condition. The hydrolyzed products were identified as monogluco-ginsenoside, ginsenoside Rh1, Rh2 and compound K, which showed anticancer effects against human cancer cell lines (SNU 717, Daudi, and Jurkat).

  • PDF

직파 4 ~ 6년생 인삼의 연근 및 직경에 따른 Ginsenoside 함량 비교 (Comparison of Ginsenoside Content According to Age and Diameter in Panax ginseng C. A. Meyer Cultivated by Direct Seeding)

  • 한진수;탁현성;이강선;김정선;최재을
    • 한국약용작물학회지
    • /
    • 제21권3호
    • /
    • pp.184-190
    • /
    • 2013
  • This study was carried out to investigate ginsenoside content in different root parts and the correlation between root diameter and ginsenoside composition of Panax ginseng C. A. Meyer cultivated by direct seeding. The unit contents of ginsenoside were 29.65, 28.76, 26.34 mg/g, respectively in 4, 5, 6 years old. However, the total contents of ginsenoside were 431.97, 606.56, 657.80 mg/root, respectively. Total ginsenoside content of fine root was higher than that of main root and lateral root. These tendencies were related to decrease by the increase of root diameter. When diameter of main root and lateral root were the same in different ages, the total ginsenoside content was higher in the order of 4 > 5 > 6 years old roots. Except for ginsenoside-Rg1, other ginsenosides components (PD/PT and total ginsenosides) had highly negative correlation with the root diameter within whole root, main root, lateral root and fine root, which indicated that ginsenoside content is correlated to root diameter. As results, it is suggested that ginsenoside content can be predicted.

가수분해 처리에 의한 홍삼과 인삼의 중성 Ginsenoside 함량 변화 (Change of Neutral Ginsenoside Contents in Red and Fresh Ginseng (Panax ginseng C. A. Meyer) by Hydrolysis)

  • 한진수;이강선;탁현성;김정선;라정우;최재을
    • 한국약용작물학회지
    • /
    • 제22권1호
    • /
    • pp.23-31
    • /
    • 2014
  • This study was carried out to investigate change of ginsenoside contents in red and fresh ginseng according to root part and age by hydrolysis. Neutral total ginsenoside contents by hydrolysis in 6-year main root and lateral root were significantly increased than those by non-hydrolysis, as 41.6 and 32.8%, respectively. However, there was no significant difference in red ginseng. In fresh ginseng, ginsenoside contents of the protopanaxatriol group such as Re, Rf, $Rg_1$, $Rg_2$, and $Rh_1$ were not significantly different, but $Rb_1$, $Rb_2$, $Rb_3$, Rc, and Rd showed significant difference. The increase rate of neutral total ginsenoside content by hydrolysis was higher in epidermis-cortex than stele. Also, the neutral total ginsenoside content was fine root > rhizome > lateral root > main root, respectively. While there was no tendency towards the increase of ginsenoside by hydrolysis with the increase of root age in fine root and rhizome, there was significant decrease in main root and lateral root.

인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량 (Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer)

  • 양덕춘;양계진
    • 식물조직배양학회지
    • /
    • 제27권6호
    • /
    • pp.485-489
    • /
    • 2000
  • 생장이 우수한 인삼모상근 세포주 (KGHR-1, KGHR-5, KGHR-8) 및 6년생 인삼근의 부위별로 ginsenoside 양상 및 생성특성을 조사하였다. 인삼모상근 및 6년생 인상근에서 ginsenoslde-Rb$_1$, Rb$_2$, Rc, Rd, Re, Rf, Rg$_1$, Rg$_2$을 확인하였으며, 인삼모상근 세포주간 및 인삼근 부위별로 ginsenoside의 함량은 큰 차이를 나타내었다. 8종류의 ginsenoside함량이 가장 높은 인삼모상근은 KGHR-1 세포주로 17.42 mg/g dry wt와 함량을 나타내었다. 모상근세포주 KGHR-1은 ginsenoside-Rd, Rg$_1$을, KGHR-5는 ginsenoside-Rb$_1$, Rg$_1$을, 그리고 KGHR-8은 ginsenoside-Rd, Re을 상대적으로 많이 생성하는 특징을 지니고 있으며, ginsenoside-Rf의 생성은 매우 낮았다. 6년생 인삼근의 부위별 ginsenoside의 함량은 주근, 지근, 세근순으로 많았으며, 주근에서 ginsenoside-Rc의 생성은 ginsenoside의 50.99%로써 모상근 세포주의 4.90~6.89%보다 매우 높았다. 6년생 인삼근의 총 ginsenoside에 대한 ginsenoside-Rg$_1$의 비율은 3.43~14.18% 수준으로 주근, 지근, 세근순으로 급격히 감소하였으며, 모상관의 17.14~24.43%와 비교할 때 매우 낮은 수준을 나타내었다. 따라서 인삼모상근 배양을 통하여 특정 ginsenosides생산이 가능하리라 생각된다.

  • PDF

Ginsenoside Rg1 Stimulates Nitric Oxide Release in Pulmonary Artery Endothelial Cells in Culture

  • Kim, Hye-Young
    • BMB Reports
    • /
    • 제28권4호
    • /
    • pp.301-305
    • /
    • 1995
  • Considering the stimulatory effects of ginsenosides from Panax ginseng C. A. Meyer on the release of nitric oxide from bovine aortic endothelial cells in vitro and vasodilatation of rabbit pulmonary artery in vivo, the present study is designed to investigate the mechanism of nitric oxide release by ginsenosides in calf pulmonary artery endothelial cells, Nitric oxide release was determined in endothelial cells treated with ginsenosides and compared with those of the receptor-dependent agonists, bradykinin and ADP and the receptor-independent calcium ionophore $A_{23187}$. The results showed that total saponin and ginsenoside $Rg_1$, not $Rb_1$, stimulated nitric oxide release measured as conversion to L-citrulline. The nitric oxide releasing properties of total saponin and ginsenoside $Rg_1$ were different; total saponin stimulated only conversion to L-citrulline, like $A_{23187}$, while ginsenoside $Rg_1$ stimulated both L-arginine transport and conversion to L-citrulline, as bradykinin or ADP did.

  • PDF

Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer

  • Kim, Yu-Jin;Jeon, Ji-Na;Jang, Moon-Gi;Oh, Ji Yeon;Kwon, Woo-Saeng;Jung, Seok-Kyu;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제38권1호
    • /
    • pp.66-72
    • /
    • 2014
  • Panax ginseng is one of the most important medicinal plants in Asia. Triterpene saponins, known as ginsenosides, are the major pharmacological compounds in P. ginseng. The present study was conducted to evaluate the changes in ginsenoside composition according to the foliation stage of P. ginseng cultured in a hydroponic system. Among the three tested growth stages (closed, intermediate, and opened), the highest amount of total ginsenoside in the main and fine roots was in the intermediate stage. In the leaves, the highest amount of total ginsenoside was in the opened stage. The total ginsenoside content of the ginseng leaf was markedly increased in the transition from the closed to intermediate stage, and increased more slowly from the intermediate to opened leaf stage, suggesting active biosynthesis of ginsenosides in the leaf. Conversely, the total ginsenoside content of the main and fine roots decreased from the intermediate to opened leaf stage. This suggests movement of ginsenosides during foliation from the root to the leaf, or vice versa. The difference in the composition of ginsenosides between the leaf and root in each stage of foliation suggests that the ginsenoside profile is affected by foliation stage, and this profile differs in each organ of the plant. These results suggest that protopanaxadiol- and protopanaxatriol(PPT)-type ginsenosides are produced according to growth stage to meet different needs in the growth and defense of ginseng. The higher content of PPT-type ginsenosides in leaves could be related to the positive correlation between light and PPT-type ginsenosides.