• Title/Summary/Keyword: total digestible nutrient

Search Result 252, Processing Time 0.021 seconds

The Studies on Growth Characteristics and Dry Matter Yield of Hybrid Corn Varieties in Daegwallyeong Region (대관령에서 옥수수 품종별 생육특성과 건물수량에 기후변화의 영향)

  • Kim, Meing Jooung;Seo, Sung;Choi, Ki Choon;Kim, Jong Geun;Lee, Sang Hack;Jung, Jeong Sung;Yoon, Sei Hyung;Ji, Hee Chung;Kim, Myeong Hwa
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • This study was conducted to investigate the effects of climate change on the growth characteristics and dry matter yields of silage corn hybrids in fields of forage crops of Hanwoo Experiment Station, National Institute of Animal Science, RDA, from Apr. 2009 to Sep. 2011. Corn hybrids were cultivated in Daegwallyeong of Gangwon Province, at an altitude of 760 m. Corn varieties used in this study consisted of 5 domestic varieties and 5 foreign varieties. Differences of silk days according to years occurred at an average of 5.5 days. The silk periods of domestic varieties occurred from Aug. 8 to 12, while that of overseas varieties was from Aug. 5 to 11. Silk days of domestic varieties occurred approximately 3 to 4 days earlier than those of oversea varieties. Silk days of Kwangpyeongok and P3156 belonging to the early varieties were Aug. 8 and 5, respectively. Kwangpyeongok and P3156 were Aug. 8 and 5, respectively. Pyeonganok and DK729 belonged to late varieties. The mean plant height of corn was approximately 231 cm, while those of Kwangpyeongok and Pyeonganok were 236 cm and 237 cm, respectively. The mean stem diameter and ear height of corn were approximately 23.2 mm and 94 cm, respectively. In the case of stem diameters, those of Cheonganok and 33J56 were 86 cm and 80 cm, respectively, while Gangdaok grew to a greater height (enter height) than other varieties. Dry matter yields of Kwangpyeongok and Pyeonganok were higher than those of other varieties. The mean leaf ratio of corn was 39.3%, while that of domestic varieties increased as compared to foreign varieties. The average DM yield of corn was 16,653 kg/ha, while those of 32P75, P3156, Pyeonganok, P3394 and Kwangpyeongok were 18,901, 17,997, 17,675, 17,194, 17,188 kg/ha, respectively. Total digestible nutrient (TDN) yields of 32P75, P3156, P3394, Pyeonganok and Kwangpyeongok were 13,381, 12,590, 12,532, 12,140 and 12,036 kg/ha, respectively. Corn crude protein (CP), in vitro dry matter digestibility (IVDMD), neutral detergent fiber (NDF), acid detergent fiber (ADF) and TDN were 7.8%, 74.2%, 42.4%, 23.5% and 70.3%, respectively. In the case of nutritive values of corn, there was no significant difference between of corn varieties of domestic and foreign origin.

Effects of Planting and Harvest Times on the Forage Yield and Quality of Spring and Summer Oats in Mountainous Areas of Southern Korea (남부산간지에서 봄과 여름 조사료 귀리의 파종과 수확 시기에 따른 조사료 품질과 생산성 변화)

  • Shin, Seonghyu;Lee, Hyunjung;Ku, Jahwan;Park, Myungryeong;Rha, Kyungyoon;Kim, Byeongju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.155-170
    • /
    • 2021
  • Oats (Avena sativa L.) represent a good forage crop for cultivation in regions with short growing periods and/or cool weather, such as the mountainous areas of southern Korea. In this study, using the Korean elite summer oat varieties 'High speed' and 'Dark horse', we aimed to determine the optimal time to plant and harvest forage oats seeded in spring and summer in a mountainous area. Seeds were planted three times from late February and early August at 9- or 10-days intervals, respectively, and plants were harvested three times from late May to October at 10-day intervals. The experiment was carried out in an upland field (Jangsu-gun Jeonbuk) in 2015 and 2016. We investigated the changes in forage yield (FY) and quality [crude protein (CP) and total digestible nutrient (TDN) contents] based on the time of planting and harvest. Neither the forage quality nor yield of either spring and summer oats was significantly influenced by the time of planting. The CP of spring oats harvested three times at 10-day intervals from late May was 12.0%, 8.2%, and 6.5%, thereby indicating a reduction with a delay in the time of harvest. In summer oats, CP ranged from 8.4% to 8.7%, although unlike CP in spring oats, was not significantly influenced by the time of harvest. For both forage types, harvest time had no significant effect on TDN. The FY of spring oats harvested in late May and early and mid-June was 10.2, 18.7, and 19.5 ton ha-1, respectively, with that of oats harvested on the latter two dates being significantly increased by 83% and 91%, respectively, compared with that in late May. Similarly, the FY of spring oats harvested in late October and early and mid-November was 7.1, 12.5, and 12.1 ton ha-1, respectively, with that of oats harvested on the latter two dates being significantly increased by 75% and 71%, respectively, compared with that in late October. Taking into consideration forage yield and quality (not less than 8% CP), it would be profitable to plant spring oats in the mountainous areas of southern Korea until March 15 and harvest around June 10, whereas summer oats could be beneficially planted until August 25 and harvested from early November.