• 제목/요약/키워드: total allowable loadings

검색결과 2건 처리시간 0.018초

생태계 모델에 의한 총허용 오염부하량 산정을 통한 연안해역의 수질관리 (Estimation of Total Allowable Pollutant Loads Using Eco-hydrodynamic Modeling for Water Quality Management on the Southern Coast of Korea)

  • 이대인;김종규
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제10권1호
    • /
    • pp.29-43
    • /
    • 2007
  • 한국 남해의 연안역(진해만에서 부산연안)에 있어서 효율적인 수질관리를 위해서, 3차원 생태-유체역학 모델을 적용하여 하계 수질을 예측하고, 목표 수질회복을 위한 오염부하 삭감량을 산정하였다. 현재의 오염부하량 조건하에서 연안해역의 수질(화학적 산소요구량과 영양염류 농도 등)은 설정된 해양환경수질기준을 초과하였고, 또한 부영양화 상태에 있기 때문에 유입하는 오염부하량의 저감이 필요하였다. 이러한 배경하에서, 모델이 적용되어 보정과 검증과정을 통해 연구해역의 유동장과 수질 분포를 유사하게 모의하였다. 시나리오 분석결과, 진해만 해역은 $Chl-{\alpha}\;10{\mu}g\;1^{-1}$$COD\;3\;mg\;1^{-1}$ 이하를 동시에 만족하기 위해서는 육상 점오염원으로부터 90% 정도의 오염물질 저감뿐만 아니라, 장기간 오염물질의 유입으로 인한 베이스 농도 자체가 높아서 이를 저감하기 위한 퇴적물로부터 용출되는 질소와 인도 약 70% 정도 삭감해야 하는 것으로 나타났다. 낙동강 하구해역은 $Chl-{\alpha}\;10{\mu}g\;1^{-1}$$COD\;2\;mg\;1^{-1}$ 이하를 만족하기 위해서는 낙동강 자체의 유입부하량을 약 80% 정도 저감해야 하며, 낙동강 하구해역을 제외한 부산 연안역은 $Chl-{\alpha}\;10{\mu}g\;1^{-1}$$COD\;1\;mg\;1^{-1}$ 이하를 만족하기 위해서는 유입부하의 70% 정도의 삭감이 이루어져야 하는 것으로 예측되었다. 연구해역의 수질이 공간적으로 차이가 있으나 대체적으로 상당히 오염된 상황이라 이러한 삭감량은 매우 커서 현실적으로 단기간에 달성하기는 어려울 것이다. 그러므로 장기적인 관점에서 지속적인 노력 즉, 해역으로 유입하는 미처리된 오염물질 차단, 수처리시설의 확충과 제거 능력 향상 및 오염된 퇴적물 정화 등이 필요하다.

  • PDF

Dynamic modeling and structural reliability of an aeroelastic launch vehicle

  • Pourtakdoust, Seid H.;Khodabaksh, A.H.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.263-278
    • /
    • 2022
  • The time-varying structural reliability of an aeroelastic launch vehicle subjected to stochastic parameters is investigated. The launch vehicle structure is under the combined action of several stochastic loads that include aerodynamics, thrust as well as internal combustion pressure. The launch vehicle's main body structural flexibility is modeled via the normal mode shapes of a free-free Euler beam, where the aerodynamic loadings on the vehicle are due to force on each incremental section of the vehicle. The rigid and elastic coupled nonlinear equations of motion are derived following the Lagrangian approach that results in a complete aeroelastic simulation for the prediction of the instantaneous launch vehicle rigid-body motion as well as the body elastic deformations. Reliability analysis has been performed based on two distinct limit state functions, defined as the maximum launch vehicle tip elastic deformation and also the maximum allowable stress occurring along the launch vehicle total length. In this fashion, the time-dependent reliability problem can be converted into an equivalent time-invariant reliability problem. Subsequently, the first-order reliability method, as well as the Monte Carlo simulation schemes, are employed to determine and verify the aeroelastic launch vehicle dynamic failure probability for a given flight time.