• Title/Summary/Keyword: torque ripple

Search Result 655, Processing Time 0.025 seconds

The Estimation of Torque Ripple According to Parameters Considered Time-varying in Voltage Equation (전압방정식에서 시변성이 고려된 파라미터에 의한 토크 리플 산정)

  • Gim, Gyu-Hwa;Cho, Gyu-Won;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1047-1052
    • /
    • 2017
  • In this paper, the calculation torque using the d-q axis has advantage like faster execution time. However, the torque ripple can't be considered in the torque calculation using d-q axis equivalent circuit because the time-dependent component is removed. When d-q transformation was performed, it was founded that some parameters has some characteristics. These characteristics were considered for representing torque ripple. The calculation with d-q axis transformation and Finite Element Analysis(FEA) were performed, and the results were compared. As a result, it was validated that the calculated torque can be expressed with ripple.

Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC) (영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계)

  • Park, Hyo-Seong;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.

A Study on Rotor Shape Design to Reduce Torque Ripple and Core Loss of IPMSM for SEV (SEV용 IPMSM의 토크리플 및 철손 저감을 위한 회전자 형상 설계에 관한 연구)

  • Jeong-In Kang;Tae-Uk Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.327-332
    • /
    • 2023
  • As interest in eco-friendly and fuel-efficient electric vehicles has increased globally, there has also been a growing interest in the efficiency, vibration, and noise of motors for electric vehicles Electric vehicles generally have significantly lower driving ranges per charge compared to the maximum driving range per fueling of internal combustion engine vehicles. Additionally, there are issues with various vibrations and noise generated by the motor that can cause discomfort for passengers. Therefore, research is necessary to reduce losses, vibration, and noise of the motor to improve the driving range of electric vehicles. IPMSM with a purchased design can obtain additional reluctance torque by utilizing the difference in inductance between the d and q axes. However, due to this reluctance torque, torque ripple occurs larger than other motors. The increase in torque ripple also increases noise and vibration. Since the reluctance torque, which is the main cause of torque ripple, is determined by the shape of the motor components, torque ripple can be reduced through shape optimization. In this paper, a rotor shape for reducing torque ripple and core loss that causes vibration, noise, and efficiency to decrease of IPMSM for electric vehicles was proposed. Optimization design was carried out by changing the shape of the q-axis path of the rotor to reduce the difference in inductance of the d and q-axis of the rotor. Finally, in order to verify the validity of the design variables derived through the optimal design, the original model and the improved model were compared through the FEM. Compared to the original model, the improved model's torque verifying ripple was reduced by about 62% and core loss was reduced by about 29%, the superiority of the improved model.

Torque Ripple Reduction in Direct Torque Control of Five-Phase Induction Motor Using Fuzzy Controller with Optimized Voltage Vector Selection Strategy

  • Shin, Hye Ung;Kang, Seong Yun;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1177-1186
    • /
    • 2017
  • This paper presents a torque ripple reduction method of direct torque control (DTC) using fuzzy controller with optimal selection strategy of voltage vectors in a five-phase induction motor. The conventional DTC method has some drawbacks. First, switching frequency changes according to the hysteresis bands and motor's speed. Second, the torque ripple is rapidly increased in long control period. In order to solve these problems, some/most papers have proposed torque ripple reduction methods by using the optimal duty ratio of the non-zero voltage vector. However, these methods are complicated in accordance with the parameter. If this drawback is eliminated, the torque ripple can be reduced compared with conventional method. In addition, the DTC can be simply controlled without the use of the parameter. Therefore, the proposed algorithm is changing the voltage vector insertion time by using the designed fuzzy controller. Also, the optimized voltage vector selection method is used in accordance with the torque error. Simulation and experimental results show effectiveness of the proposed control algorithm.

A Commutations Strategy for Torque Ripple Reduction of Sensorless Drive for Brushless DC Motors (BLDC 전동기용 센서리스 드라이브의 토크 리플 저감을 위한 전환 방법에 관한 연구)

  • 여형기;김태형;이광운;박정배;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.199-205
    • /
    • 1998
  • Brushless DC motors have trapezoidal back-EMF waveform. Theoretically it should be fed with rectangular phase current in order to produce torque ripple free. Because it is drived by a voltage source inverter, perfect rectangular phase current can not available and therefore produce torque ripple. In this paper, the torque ripple due to commutation is analyzed and the practical method that can reduce the torque ripple is proposed. Experimental and simulation results show the effectiveness of the proposed method.

  • PDF

Influence of Torque Ripple Caused by Current Harmonics on Induction Motor Fed PWM Inverter (PWM 인버터로 구동되는 유도전동기 시스템에서 고조파가 토오크 맥동에 미치는 영향에 관한 연구)

  • Baek, S.H.;Kim, Y.;Ham, J.G.;Maeng, I.J.;Sohn, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.12-14
    • /
    • 1995
  • It is necessary to analyze exactly the torque ripple components in the harmonics as to decrease the torque ripple. Lower harmonics influence mainly on torque ripple. Among the harmonics, the pairs of 5's, 7's and 11's, 13's are dominant, and the magnitude of each pairs of current harmonics are very significant. Therefore, for decreasing the torque ripple, current harmonic pairs of 6n ${\pm}$1's orders must be simultaneously eliminated. In the case of eliminating one of current harmonic pairs, even though the magnitude of the current harmonics is small, It has great effect on torque ripple.

  • PDF

Analysis of Phase Current Ripple and Torque Ripple of a 6-Phase PMSM Controlled by Interleaved PWM (인터리브드 PWM 방식의 6상 영구자석 동기전동기 전류 맥동 및 토크 맥동 분석)

  • Jang, Won-Jin;Kim, Seong-Hoon;Jun, Bo-Sung;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.305-315
    • /
    • 2022
  • In this paper, phase current ripples and torque ripples of six-phase PM synchronous motor controlled by interleaved PWM are analyzed. The cause of the increase of phase current ripple in the interleaved PWM was mathematically analyzed based on the mutual inductance of stator windings and effective voltage vector. Simulation and experiment verified that the DQ current ripple and torque ripple can be reduced by interleaved PWM control. The FFT analysis of torque waveform confirmed that the magnitude of harmonic torque corresponding to double the PWM frequency was reduced.

A Study on the Torque Ripple Reduction of Low Voltage High Current SPMSM (저전압 대전류 SPMSM 토크리플 저감 제어)

  • Lee, Geun-Ho;Hong, Jeong-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2391-2395
    • /
    • 2009
  • Active control schemes which modify the excitation to correct for any of the nonideal characteristics of the SPMSM is described. Especially, because of design limitations(size and cost) in automobile, the back-EMF of SPMSM can't be perfectly designed with sinusoidal wave and iron core of stator is saturated so that torque ripple is unavoidable. An active cancellation method of the pulsating torque components which would otherwise be generated using the classic sinusoidal current excitation is illustrated.

Online Load Torque Ripple Compensator for Single Rolling Piston Compressor (싱글 로터리 컴프레셔의 온라인 부하 토크리플 보상기)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Given their low cost, single rolling piston compressors (SRPC) are utilized in low-power room air-conditioning systems. The SRPC cycle is composed of one compression and discharge process per mechanical rotation. The load torque is high during the compression process of the refrigerants and low during the discharge process of the refrigerants. This load torque variation induces a speed ripple and severe vibration, which cause fatigue failures in the pipes and compressor parts, particularly under low-speed conditions. To reduce the vibration, the compressor usually operates at a high-speed range, where the rotor and piston inertia reduce the vibration. At a low speed, a predefined feed-forward load torque compensator is used to minimize the speed ripple and vibration. However, given that the load torque varies with temperature, pressure, and speed, a predefined load torque table based on one operating condition is not appropriate. This study proposes an online load torque compensator for SRPC. The proposed method utilizes the speed ripple as a load torque ripple factor. The speed ripple is transformed into a frequency domain and compensates each frequency harmonic term in an independent feed-forward manner. Experimental results are presented to verify the proposed method.

Suppression Control Method of Torque Ripple for IPMSM Utilizing Repetitive Control and Fourier Transformer

  • Hattori Satomi;Ishida Muneaki;Hori Takamasa
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.341-345
    • /
    • 2001
  • Recently, many examples of practical applications of the motors with reluctance torque, such as IPMSM, RM, etc. are reported. However, the problems of the torque ripple produced by the IPMSM, are also presented. The main reasons of the torque ripple generation are the structural imperfectness of the IPMSM and its control system, such as the cogging torque of the motor, the dead time of inverter, sensors offset, imbalance and non-linearity, and so on. In this paper, authors propose a suppression control method of the torque ripple for IPMSM utilizing the repetitive control with the Fourier transformer and a vibration signal detected by an acceleration sensor attached to the motor frame, considering periodicity of the motor torque ripple. An experimental system to simulate the compliant mechanical frame is constructed, and the effectiveness of the proposed method is confirmed by experimental results.

  • PDF