• 제목/요약/키워드: torque loss

검색결과 331건 처리시간 0.035초

하이브리드 자동차용 모터 및 인버터 최신 동향 분석 (Recent Progress Trend in Motor and Inverter for Hybrid Vehicle)

  • 김성진;홍승민;남광희
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.381-387
    • /
    • 2016
  • Many efforts have focused on the improvement of power density and efficiency by downsizing the motor and inverter. Recently, Toyota, Honda, and GM realized that the compact-sized motor uses the hairpin structure with increased space factor. Reducing the maximum torque from high-speed technique also makes it possible to design the high-power density model. Toyota and Honda used the newly developed power semiconductor IGBT to decrease conduction loss for high-efficiency inverter. In particular, Toyota used the boost converter to increase the DC link voltage for high efficiency in low-torque high-speed region. Toyota and GM also used the double-sided cooling structure for miniaturization of inverter for high-power density.

영구자석 동기 서보 전동기의 제어에 관한 연구 (A study on Permanent Magnet Synchronous Servo Motor Control)

  • 김종구;최욱돈;정명길;이현상;김명찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.543-547
    • /
    • 1991
  • This paper illustrates maximum torque per ampare radio operation and efficiency operation, which are prevalently applied to the control of permanent magnet synchronous motor(PMSM). Maximum torque per ampare ratio operation minimizes the copper loss of PMSM and maximum efficiency operation minimizes the total loss of PMSM. To verify the difference of these method, simulation and experiment results applied to IPMSM(Interior type PMSM) and SPMSM(Surface mounted PMSM) are presented.

  • PDF

유한요소법과 프라이자흐모델이 결합된 해석기법을 이용한 슬롯수에 따른 손실과 토크 특성 을 통한 동기형 릴럭턴스 전동기 특성분석 (A Novel Stator Design of Synchronous Reluctance Motor by Loss & Torque Characteristics Related to Slot Numbers using Coupled Preisach Model & FEM)

  • 송한상;이중호;이병두
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1053-1054
    • /
    • 2011
  • This paper deals with the stator design solution of a synchronous reluctance motor (SynRM) with various slot numbers by loss & torque characteristics related to the slot open and teeth width using coupled Preisach modeling & FEM. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the nonlinear solution. Comparisons are given with characteristics of SynRM according to stator winding, slot number, slot open and teeth width variation.

  • PDF

비대칭 U - 코어 고정자 구조를 가진 새로운 2상 영구자석 동기전동기의 특성해석 (Characteristic Analysis of A Novel Two-Phase Permanent Magnet Synchronous Motor with Asymmetric U-core Stator Structure)

  • 조비;;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1089-1090
    • /
    • 2011
  • This paper presents a novel two-phase two-pole permanent magnet synchronous motor (PMSM) with asymmetric U-core stator structure. The construction and parameters of the novel two-phase U-core PMSM are compared with a conventional U-core single-phase PMSM (SPMSM). Then transient characteristics such as torque, back-emf, and power loss of the both PMSMs are analyzed by using 3-D Finite Element Method (FEM). Under the same condition of rated input current, synchronous speed, similar dimensions and volume, FE results show that the two-phase PMSM with U-core stator has significantly less torque ripple than single-phase U-core PMSM, with similar power loss and efficiency.

  • PDF

The Effects of Design Parameters on the Friction Characteristics in the Valve Train System

  • Kim, Ji-Young;Han, Dong-Chul;Cho, Myung-Rae
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.75-79
    • /
    • 2001
  • This paper is a report on the parametric study of the friction characteristics on the direct acting type OHC valve train system. The numerical simulation was performed by using the IV-TAP. Dynamic analysis by using the lumped mass method was previously performed to define the acting load. The friction characteristics were analyzed by using the partial asperity contact model. The effects of operating conditions and major design parameters on the total driving torque were investigated. From the analytical prediction, it is found that valve spring stillness, surface roughness, and base circle radius are the main factors to reduce the frictional loss on the valve train system.

  • PDF

마그네틱 기어드 모터의 자석 기어 자기력 해석 및 설계 (Magnetic Force Analysis and Design Methodology of Magnetic Gear in the Magnetic Geared Motor)

  • 정광석
    • 융복합기술연구소 논문집
    • /
    • 제13권1호
    • /
    • pp.7-12
    • /
    • 2023
  • The built-in motor with an integrated magnetic gear can realize high torque without a separate reduction device. In this paper, the main design parameters of the magnetic gear constituting the magnetic geared motor are derived and the sensitivity analysis results according to these design parameters are discussed. In particular, processing and assembly issues of modulators sandwiched between rotating bodies are discussed, and loss and magnetic force characteristics of various types of modulators are introduced. Since the modulator, which plays a key role in converting the torque of the magnetic gear, is desirable to have a separate form, it is inevitable to add a non-magnetic support to add torsional stiffness according to high-speed rotation, so the effect of this is also analyzed.

A Lookup Table Based Loss Minimizing Control for FCEV Permanent Magnet Synchronous Motors

  • Lee, Jung-Gi;Nam, Kwang-Hee;Lee, Sun-Ho;Choi, Soe-Ho;Kwon, Soon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.201-210
    • /
    • 2009
  • A loss minimizing controller is developed for a fuel cell electric vehicle (FCEV) permanent magnet synchronous motor (PMSM). The PMSM losses are modeled by some experimental equations. Applying Lagrangian to the loss function, a necessary condition for the optimality appears to be a fourth order polynomial, and the loss minimizing solutions are obtained by a simple numerical approach. On the other hand, the loss minimizing solutions are found by scanning the motor loss in the entire operating region. The two results agree well. The loss minimizing current sets for given torque and speed are made into a table, which is utilized as a look-up in the current control loop.

Loss Minimization Control of Interior Permanent Magnet Synchronous Motors Considering Self-Saturation and Cross-Saturation

  • Pairo, Hamidreza;Khanzade, Mohammad;Shoulaie, Abbas
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1099-1110
    • /
    • 2018
  • In this paper, a loss minimization control method for interior permanent magnet synchronous motors is presented with considering self-saturation and cross saturation. According to variation of the d-axis and q-axis inductances by different values of the d-axis and q-axis components of currents, it is necessary to consider self-saturation and cross saturation in the loss minimization control method. In addition, the iron loss resistance variation due to frequency variation is considered in the condition of loss minimization. Furthermore, the loss minimization control method is compared with maximum torque per ampere (MTPA), unity power factor (UPF) and $i_d=0$ control methods. Experimental results verify the performance and proper dynamic response of the loss minimization control method with considering self-saturation and cross saturation.

The Iron loss Estimation of IPMSM According to Current Phase Angle

  • Cho, Gyu-Won;Kim, Dong-Yeong;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1345-1351
    • /
    • 2013
  • Variable iron loss as function of current phase angle of Interior Permanent Magnet Synchronous Motor(IPMSM) was calculated through Curve Fitting Method(CFM). Also, a magnetic flux density distribution of iron core according to current phase angle was analyzed, and an iron loss calculation was performed including harmonic distortion. The experiment was performed by production of non-magnetizing model for the separation of mechanical loss, and the iron loss was calculated by the measurement of input using power analyzer and output power using dynamometer. Some error was generated between experimental results and calculation value, but an iron loss diminution according to current phase angle followed a same pattern. So, errors were generated by measurement, vibration, noise, harmonic distortion loss, etc.

Investigation on Performance Characteristics of IPM for Electric Vehicles Considering Driving Conditions and Pole-Slot Combinations

  • Seo, Jangho
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.268-275
    • /
    • 2013
  • This paper shows the characteristics of performance for interior permanent magnet machine (IPM) considering driving conditions such as maximum torque per ampere (MTPA) and flux-weakening control especially in terms of harmonic loss. In particular, based on finite element analysis (FEA), permanent magnet (PM) eddycurrent loss and the harmonic iron loss have been computed where the models have been intentionally designed to identify the effects of pole-slot combinations on the loss while maintaining the required power for electric vehicle. From the analysis results, it was shown that the rotor iron loss and PM eddy-current loss of machine employing fractional slot winding are extremely large at load condition. Furthermore, it was revealed that the harmonic iron loss at high-speed operation is mainly distributed over stator teeth and rotor surface, which may aggravate cooling system of the rotor structure in the vehicle.